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PREFACE  

 

It is a pleasure to welcome you to the 35th Annual Conference of the South African Society for Atmospheric Sciences 

(SASAS 2019) in Vanderbijlpark, Gauteng (8-9 October 2019). This conference is hosted by the Agricultural Research 

Council - Soil, Climate and Water (ARC-SCW) under the theme ‘CLIMATE MEETS AGRICULTURE – THE 

INTERPLAY’. The main aim is to increase awareness on the connection between agriculture and climate. Thus, the 

interplay requires collaboration among researchers, government officials and farmers, not only as a vehicle to improve 

science but also to develop applications for food security, environmental sustainability and economic development, 

as well as to ensure household and community well-being. 

 

SASAS 2019 promises to be both stimulating and informative, with a wonderful array of international keynote 

speakers and invited speakers. The programme covers topics on Agrometeorology; Air Quality and Aerosols; Remote 

Sensing Applications; Climate Change and Agriculture; Weather Forecasting and Climate Modelling; Climate 

Extremes – Impacts and Preparedness; Instrumentation and Data Collection; Atmospheric Wave Dynamics and 

aerosols, Impacts of Climate Variability and Change as well as Climate Services, Policy and Research Opportunities. 

Thus, delegates will have a wide range of sessions to attend at the conference. This programme also covers special 

invited talks discussing topical issues, as well as speed talks by students from various institutions. A total number of 

100 abstracts were accepted for the conference. Each contributed abstract submitted for oral or poster presentation 

was edited and extended abstracts were peer reviewed.  

 

We would like to thank the SASAS Council for allowing us to host the conference. Our sincere gratitude also goes to 

the organizing committee, review panel committee, and the Stanley Jackson award committee. We would also like to 

thank all the authors for contributing their research to the conference. Special thanks to South Africa Weather Service 

(SAWS), United Nations Environment Programme (UNEP), Water Research Commission (WRC) and Campbell 

Scientific Africa (CS Africa) for sponsoring the conference. 

 

We wish you all a wonderful scientific experience and look forward to a fruitful conference. 

 

Teboho Masupha and Phumzile Maluleke 

SASAS Conference Co-Chairs 
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MESSAGE FROM THE PRESIDENT 

 

Dear SASAS community, 

 

The SASAS 2019 conference is taking place during a remarkable period in the history of climate science. Never before 

has climate related issues featured on the global stage as right now with actions such as the global climate strike that 

demands action at governmental levels to secure our sustainability on the Earth. In southern Africa our existence is 

closely linked with the agricultural sector, which is very vulnerable not just within a changing climate, but also from 

one season to the next, and even down to the daily time scale. This year, SASAS is hosted by the Agricultural Research 

Council – Soil, Climate and Water, with the theme of the conference, “CLIMATE MEETS AGRICULTURE – THE 

INTERPLAY”. The common theme in the SASAS 2019 conference keynote addresses is sustainable food production 

and the role of the weather and climate in achieving food security. There is an increasing responsibility on the climate 

science community to provide a better service to all sectors, across all time scales.  The annual SASAS conferences 

provide a platform where the climate science community can interact amongst ourselves to advance our research and 

to develop young scientists. Our conferences also provide opportunities to interact with other sectors in need of 

weather and climate information. This year, we welcome everyone from the agricultural community to join us and to 

share your expertise to fulfil the overarching responsibility of providing a service that can make a positive difference.  

 

Welcome to SASAS 2019. 

 

Christien Engelbrecht, SASAS President 
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ABSTRACTS 
 

1. AGROMETEOROLOGY 

 

Investigating the effect of solar radiation components on surface evaporation 

 

P. Govender*, J.A. Ogunniyi and V. Sivakumar 

 

School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa 

 

*Corresponding author e-mail: GovenderP5@ukzn.ac.za; Tel: 031-2607661 

 

The effect of solar radiation components on surface evaporation for successive summer and winter months were 

investigated over Durban, South Africa, using measurements from a pyrheliometer, pyranometer and MERRA 

reanalysis data during the 2014-2016 period. The results show significantly higher direct radiation during summer 

compared to winter which leads to increased surface evaporation. Durban generally has cloud free skies during winter, 

while most days in summer experience substantial cloud cover. This resulted in significant fluctuation in diffuse 

radiation during the summer, causing increased scattering and reflection, and which resulted in an increased 

evaporation rate. 

 

Keywords: Direct normal; Diffuse; Scattering; Durban  

 

Introduction   

Solar radiation provides the fundamental requirements 

for plant growth i.e. heat and light. Radiation supplies 

the needed energy for certain metabolic processes 

within growing plants. It is required for various plant 

processes such as germination, leaf expansion, stem 

growth, flowering, and fruit growth and curing 

(Palmer, 1920; Yadav, 2016). In addition, radiation 

reaching the ground affects climatic conditions such as 

air temperature, humidity and rainfall as well as soil 

conditions, all which are important for agricultural 

purposes. 
 

Durban (29.858⁰ S; 31.021⁰ E) is located on the east 

coast of South Africa, and experiences more than 100 

sunny days annually (Govender et al., 2018). Within 

the KwaZulu-Natal province, there is a large expanse 

of sugar cane plantations, contributing to the 

production several million tons of sugar cane crops 

annually. The subtropical climate of province provides 

the ideal environment for their growth. An important 

factor responsible for the climate is the solar radiation, 

where the amount and intensity available depends on 

factors such as atmospheric conditions and season.   
 

In this study, the effect of direct normal and diffuse 

solar radiation components on surface evaporation 

will be investigated. Evaporation describes the amount 

of water loss to the atmosphere from the Earth’s 

surface. It is a major component in the computation of 

surface energy balance and in the hydrological cycle. 

It is therefore important to accurately determine the 

amount of water loss into the atmosphere for 

applications such as irrigation planning, water 

resource management among others (Syu et al., 2016).  
 

Surface evaporation rate is one of the processes 

dependent on the amount of radiation received, and the 

direct normal and diffuse radiation components are 

major contributors to this process. Therefore, this 

study aims to investigate the relationship between 

these three variables.   
 

Direct normal radiation is the component that is 

directly from the Sun’s disk, and can be regarded as 

the amount of ‘sunshine’. Diffuse radiation is the 

component that undergoes scattering and reflection 

from atmospheric components such and cloud 

aerosols, as well as from nearby surfaces (Govender, 

2017). Through evaporation, direct and diffuse 

radiation has an effect on the amount of water 

contained in the soil (soil moisture) which is important 

for crop production.  
 

Instrumentation and Method 

Solar radiation and evaporation rate data for Durban, 

South Africa, for a period of two years during 2014-

2016 were included in the analysis. For the 

measurement of the two solar radiation components, a 

pyrheliometer (200 nm to 4000 nm) and pyranometer 

(285 nm to 2800 nm) were used for the measurement 

of direct normal (Dn) and diffuse horizontal (Dh) 

radiation, respectively. A solar station consisting of 

the instruments are located at the University of 

KwaZulu-Natal (29.870⁰ S; 30.976⁰ E) on a roof 

platform that is 150 above sea level. A pyrheliometer 

measures the nearly collimated radiation within a 

narrow field of view, usually between 5.0⁰ and 5.8⁰. 

mailto:GovenderP5@ukzn.ac.za
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When the pyrheliometer is pointed at the Sun, only 

radiation within the field of view is captured by the 

detector. To continuously measure direct normal 

radiation, the pyrheliometer has to be constantly 

pointed at the Sun. This is achieved through the use of 

a solar tracker. The pyrheliometer (Model CHP1) 

mounted onto the Solys2 solar tracker is shown in Fig. 

1. Diffuse horizontal radiation is measured using a 

pyranometer. A pyranometer measures radiation 

incident on it with the solid angle of 2π. A blackened 

thermopile sensor is housed in a glass domed structure, 

which allows transmission of radiation equally from 

all directions. Measurement of the diffuse radiation is 

achieved by using a shading device to cover the 

sensing element. The direct radiation is blocked out so 

that only the scattered and reflected radiation may be 

received. The pyranometer (Model CMP11) used in 

this study is shown in Fig. 2. Both instruments are 

subject to regular maintenance (i.e. cleaning of the 

optical windows) and data were manually check for 

quality. Radiation measurements were recorded at 

minute-resolution intervals, and averaged to produce 

daily averages. Daily averages of Dn and Dh 

measurements were then used for the present analysis.  

 

Data for surface evaporation was obtained from 

Modern-Era Retrospective Analysis for Research and 

Applications (MERRA) model, through the Giovanni 

Earth Data portal. The model has a spatial resolution 

of 0.5⁰ × 0.6⁰. Hourly measurements were averaged to 

produce daily estimates of surface evaporation. This 

was done to ensure that evaporation data matched the 

temporal resolution of the radiation data.  

Figure 1: Pyrheliometer (CHP1) used to measure Dn, 

shown mounted onto the Solys2 solar tracker. Inset: 

Front view of the pyrheliometer which constantly 

points at the Sun.  

 

Results and Discussion 

Correlation between Dn, Dh and evaporation  

Figs. 3 and 4 show the correlation between surface 

evaporation and Dn for winter and summer, for both  

Figure 2: Pyranometer (CMP11) used to measure Dh. 

A shading ball device is used to block the Dn 

component, such that only Dh is received by the 

sensor. 

 

years, respectively. For winter (), most days have an 

average Dn ranging from 600-900 W/m2. The 

evaporation rate remains mostly below 3 kg/m2/s, with 

a few instances that occur above. For summer (), Dn is 

significantly higher, as expected, and the surface 

evaoporation also shows a corresponding increase, 

however with a larger variation. Surface evaporation 

rate has a variation that is approximately between 3 

kg/m2/s and 7 kg/m2/s. In addition Dn averages are 

mostly > 800 W/m2. 

Figure 3: Correlation between surface evaporation and 

Dn for winter. 

 

Correlation between surface evaporation and Dh are 

shown in Fig. 5 and 6. For winter (), Dh varies between 

300-600 W/m2. Similar to Dn, the evaporation rate is 

below 3 kg/m2/s for most days. For summer (), Dh 

varies between 400-1000 W/m2. In addition, 

evaporation rate also shows a large variation 

approximately between 3 kg/m2/s and 7 kg/m2/s. 
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Although, the contribution from the Dn component is 

larger than that of Dh, the surface evaporation rate 

does not show a significant increase. 

 

The significant variation in Dh during summer is 

mainly due to the presence of clouds. Durban 

experiences substantial cloud cover during summer 

(Govender, 2017). Clouds result in subtantial 

scattering of Dh resulting in an increase of this 

component. Winter generally has clearer days and 

signifcantly less scattering. 

Figure 4: Correlation between surface evaporation and 

Dn for summer.  

Figure 5: Correlation between surface evaporation and 

Dh for winter for 2014 and 2015.  
 

Seasonal analysis 

Shown in Fig. 7 (a)-(d) is the relationship between Dn, 

Dh and surface evaporation for the winter and summer 

seasons. For winter in both years, mean evaporation is 

relatively low (below 2×kg/m2/s). On average, Dn is 

approximately 800 W/m2. The Dh average is below 

600 W/m2, and shows little fluctuation during most 

days. This is due to Durban experiencing many cloud-

free days in winter (Govender, 2017). There was one 

instance of missing data for Dh during the winter 

period of 2014, and some for 2015. Nevertheless, the 

trend of Dh during the 2015 winter was similar to that 

of the 2014 winter.  

 

During the winter of 2015, there was an instance where 

the Dn and Dh decreased, but evaporation rate 

increased.  

Figure 6: Correlation between surface evaporation and 

Dh for summer.  

 

This could possibly be explained by the presence of 

high wind speed during these days that resulted in an 

increase in evaporation, despite the decreased 

radiation.  
   
For summer in both years, evaporation rate is 

substantially higher (> 4× kg/m2/s) for most days, due 

to the higher Dn (> 800 W/m2). The Dh also shows an 

increase as well as significant variation. The variation 

in Dh during summer is mainly due to clouds. Durban 

experiences sunbstantial cloud cover during the 

months of November, December and January, 

particularly of the stratocumulus type (Govender, 

2017), resulting in increased Dh. Correlation between 

surface evaporation and Dn and Dh were found to be 

low, which may be due to the coarse spatial resolution 

of the MERRA data, and which requires further 

investigation. Overall, for the summer season both 

components contribute to the higher evaporation rate, 

while during the winter season the direct component is 

the main contributor.  
 

Conclusions  

This study investigated the effect of individual solar 

radiation components on surface evaporation for 

Durban, South Africa. In summer, direct radiation is 

higher due to the higher solar altitude angle above the 

horizon. Diffuse radiation is higher due to increased 

scattering by clouds. Both these factors contribute to 

the higher evaporation rate during the summer season 

as compared to the winter season. During the winter, 

evaporation rate is mainly dependent on the direct 

component, since diffuse radiation is significantly 

lower due to clearer sky conditions. 
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Evaporation rate has a direct effect on soil moisture 

conditions, which in turn affects crop production. This 

study provides useful information on how the variation 

of solar radiation components can be a contributing 

factor to such conditions.  

 

Figure 7: Relationship between Dn, Dh and evaporation for (a) winter season of year 2014, (b) summer season of year 

2014, (c) winter season of year 2015 and (d) summer season of year 2015.  
 

In addition, further work will include meteorological 

variables such as wind speed, temperature and 

humidity, combined with solar radiation components, 

in order to investigate the effect on evaporation rate. 
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2019 versus 2006: Improved yield potential for late planted maize in a warming  

climate 

 

Johan Malherbe1, Christien Engelbrecht2, Francois Engelbrecht3, Jacobus Van Der Merwe1  
1Council for Scientific and Industrial Research (CSIR) 

2Agricultural Research Council (ARC) 
3University of the Witwatersrand 

Corresponding author: jmalherbe@csir.co.za 

 

The 2018/19 summer saw increased white maize production as projected by the National Crop Estimates Committee 

when weather conditions during the very late part of the growing season became uncharacteristically favourable for 

crop maturation. Rainfall started very late over the western production areas – long after the planting window. Here 

we contrast the crop development in 2018/19 to another summer with very late rainfall (2005/06) where the upward 

tendency in crop expectations was absent. We also note differences in temperature regimes and consider the potential 

effect of climate change to promote the occurrence of improved potential when planting occurs after the optimal 

planting window.  

 

Keywords: Maize Production, South Africa, Climate Change, Crop Modelling 

 

Introduction  

The maize-production region in South Africa, 

particularly the western region, was negatively 

impacted by the recent drought in 2015/16. During this 

and earlier drought events that affected  production 

negatively in the region, very high maximum 

temperatures during mid-to late summer occurring 

during the sensitive growth phase of the plant were 

instrumental (e.g. Malherbe et al. 2015, 2016). The  

growing risk of detrimental temperatures during mid-

summer is underlined by an observed upward trend in 

temperatures, since the 1960’s,in the order of 1 - 2°C 

per century over the region (Kruger 2004) and 

projected further increases under anthropogenic 

forcing (Engelbrecht et al. 2015).   
 

The western maize production region of South Africa 

produces most of the country’s white maize, used for 

human consumption. The 2018/19 summer rainy 

season saw extremely dry conditions dominating the 

central parts of the country, including the western 

maize production region, during the October – 

December period. The first widespread rain only 

occurred by the very end of December, and while 

conditions henceforth changed to periods with 

widespread rain and extensive cloud cover, totals were 

for the most part not exceeding the long-term mean in 

many areas, but were closer to the norm than during 

the early part of the summer. By April, widespread 

above-normal rain occurred. This was followed by 

unseasonably warm conditions during most of autumn, 

with frost only by the end of May, substantially later 

than the typical date of the first widespread frost. As 

the season developed during the January – May period, 

the very favorable conditions resulted in successive 

increases in the estimate for total production coming 

from the western production areas (CEC 2019), even 

though planting happened after – and in some cases 

several weeks after the planting window over the 

region. Based on the expectation of hot and dry 

conditions over the summer rainfall region towards 

mid- and late summer as indicated by the seasonal 

outlooks from a multitude of coupled climate models 

(http://iri.columbia.edu/our-

expertise/climate/forecasts/seasonal-climate-

forecasts/), together with a slow start to the season 

maize futures prices increased markedly towards early 

January. The unexpected favorable conditions towards 

late summer caused maize futures prices to decrease 

by 10 to 20% during the remainder of the growing 

season, reflecting the effect of an unrealistically 

negative outlook earlier and unexpected favorable 

conditions in late summer.  
 

In the 2005/06 summer, a similar pattern occurred in 

terms of rainfall. However, during that summer, there 

was no upward trend in estimated production, despite 

rainfall totals being higher than in 2018/19. We  

observe the difference in temperatures between the 

two summers and consider the potential effect of 

climate change on the production potential of very late 

planted maize.    
 

Data and Methods 

Daily weather data and soil profile information from 

the Agricultural Research Council – Institute for Soil, 

Climate and Water (ARC-ISCW) climate and soil 

databanks respectively were used as input data to a 

crop simulation model. The research presented here 

focused on one specific area in the western maize 

production region, located near Potchefstroom 

(26.75°S, 27.05°E). 

mailto:johan@arc.agric.za
http://iri.columbia.edu/our-expertise/climate/forecasts/seasonal-climate-forecasts/
http://iri.columbia.edu/our-expertise/climate/forecasts/seasonal-climate-forecasts/
http://iri.columbia.edu/our-expertise/climate/forecasts/seasonal-climate-forecasts/
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The DSSAT Crop System Model (previously known 

as CERES-maize - Jones et al. 2003; Hoogenboom et 

al.  2010) was used to simulate the effect of different 

planting dates and using a long versus medium 

growing season cultivar. Table 1 represents the crop 

management considerations together with the 3 

planting dates after the normal planting window. 

Application of fertilizers was assumed to be 60 kg Ha-

1 Nitrogen, a typical fertilizer strategy for dryland 

cultivation in the area. 

 

Table 1 Variables considered during modeling 

 

The sum total of combinations considered was 6 – 

resulting in a total of 240 experiments when executed 

for each year in the time series (1980 – 2019). The soil 

type is a common type found in the area of interest, as 

indicated by the land type inventories of the dominant 

land types (ARC-ISCW Land Type Inventory and soil 

descriptions). It has a reddish fine sandy loam to sandy 

clay loam textured upper horizon. The upper horizon 

of the soil is of medium depth (520 mm - Pinedene 

Klerksdorp). The 3 planting dates outside the normal 

planting window are sometimes used in the event of 

dismal failure of rainfall during October – December, 

as observed during both 2005/06 and 2018/19. Model 

simulations for all growing seasons started 150 days 

before planting.  

 

To evaluate the possible increased probability of 

warmer late-summer / autumn conditions, we consider 

an AMIP-style run of the Conformal Cubic 

Atmospheric Model, with surface temperature 

modelled at 8 km spatial resolution in an AMIP-style 

CCAM downscaling with observed greenhouse gas 

concentrations and SSTs consistent with the observed. 

 

Results and Discussion 

Fig. 1 shows the monthly total rainfall during 2005/06 

and 2018/19, together with the long-term average per 

month.    

 
Fig. 1 Monthly rainfall in 2005/06 (grey bars) and 

2018/19 (black bars) as well as the long-term average 

per month (broken line).  
 

It is clear that during both these summers, drought 

characterized the October-December periods while the 

latter part of summer saw near-normal or above-

normal rainfall. It is also clear that rainfall during 

2005/06 was mostly higher than during 2018/19 

during the latter part of summer potentially supporting 

higher production. Rainfall during the October-

December period was only 45% (32%) of the long-

term average during 2005/06 (2018/19). During 

January to April it was 158% (90%) in 2005/06 

(2018/19). Table 2 shows various climate parameters 

during the 2005/06 and 2018/19 summers during the 

growing season as determined by the DSSAT 

simulations.   
 

Table 2 Rainfall, average maximum temperature and 

average minimum temperature during the growing 

seasons for the long-season and medium-season 

cultivars during 2006 and 2019, for the planting dates 

as indicated.  

 

 
 

According to model output data (Table 2), that rainfall 

in 2006 during the growing seasons was much higher 

than in 2019 for all planting dates and cultivars 

indicated. On average, maximum temperatures were 2 

– 3 °C higher in 2019. While minimum temperatures 

were fairly similar, it should be noted that the 2019 

harvest date is 2 weeks later than in 2006 (simulated) 

and therefore indicates warmer night-time/early 

morning conditions on a day-to-day basis.  

 

Cultivar
Plant 

Date
Year

Harvest 

Date

Rainfall 

(mm)

TX av 

(°C)

Tn av 

(°C)

2006 01-Jun 455.8 24.5 11.8

2019 14-Jun 316.3 27 11.6

2006 01-Jun 382 24.1 11.1

2019 14-Jun 302.8 26.4 11.1

2006 01-Jun 371.3 23.7 10.6

2019 14-Jun 267.5 26.2 10.6

2006 01-Jun 455.8 24.5 11.8

2019 04-Apr 151.6 30.2 15.7

2006 01-Jun 382 24.1 11.1

2019 14-Jun 302.8 26.4 11.1

2006 01-Jun 371.3 23.7 10.6

2019 14-Jun 267.5 26.2 10.6

Long 

season

10-Jan

25-Jan

05-Feb

Medium 

season

10-Jan

25-Jan

05-Feb

Variable Experiment 

Soil Type  Pinedene Klerksdorp 

Row Width (m) 1.0 

Plant Population 

(plants m-2) 
1.5 

Planting date 
10 January, 25 January, 5 

February  

Cultivar type 
Medium  growing-season, 

Long  growing-season 
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A clear problem during 2006 was the occurrence of 

relatively low temperatures during the latter part of 

summer, specifically towards the March-May period, 

while temperatures remained very mild towards the 

very end of the growing season in 2018/19 (Fig. 2).  

 

 
Fig. 2 Daily minimum temperatures during the 

March-May periods in 2006 (grey) and 2019 (black).   
 

Temperatures falling below 10°C results in 

significantly slower crop development. During most of 

April 2006, minimum temperatures were below this 

value while it remained above 10°C for most of April 

2019. If one considers the first day when minimum 

temperature dropped below 5°C, it occurred about 2 

weeks earlier in 2006 than in 2019 (23 April vs. 10 

May). Figs. 3a and 3b show the modelled results for 

long and medium growing season cultivars and 

different very late planting dates during 2006 and 

2019.  

Fig. 3a: Yield simulated for the long growing-season 

maize cultivar on the Hutton Pinedene soil type per 

planting date (left to right) and plant population of 1.5 

plants/m2 during 2006 (grey) and 2019 (charcoal). 

  
Fig. 3b: Same as Fig. 3a, but for a medium growing 

season cultivar.  

 

The strong positive impact of the very late part of the 

2019 summer, compared to that of 2006, is clear by the 

contrasting trends in yields obtained, with decreases 

(increases) noted with later planting dates during 2006 

(2019). In fact, of all the experiments, the second 

highest yield was obtained by a medium growing 

season cultivar, planted at the latest date considered – 

in 2019. Moreover, for the long growing season 

cultivar, the highest yield obtained for any planting 

date, was in 2019 – despite much lower rainfall – again 

showing the important role played by the higher 

temperatures towards autumn.  

 

Given the very wet conditions during JFM 2006, it is 

fair to question the role of water-logged conditions 

versus temperature regime in determining the 

outcomes of that production season. To gain an 

understanding of the importance of temperatures in 

determining the trends observed, Fig. 4 shows, for the 

same experiments as in Fig. 3, the results when the 

March – May temperature records for 2006 and 2019 

are swopped while other variables are kept as in the 

original dataset.   

 

Fig. 4: Same as Fig. 3b, but for these experiments, the 

temperature records in 2006 (2019) were replaced with 

the temperature records of 2019 (2006). 

 

It is clear that, given temperatures as in 2019, the 2006 

season would have seen greatly increased yields for all 

planting dates. Given the relatively dry March period 

in 2019, one would assume that the lower temperatures 

as observed in March 2006 could have been beneficial. 

However, Fig. 4 shows that the lower temperatures 

would have resulted in lower yields in 2019 also, with 

no strong increase in production if planting happened 

extremely late (as model results indicate for planting 

only by 5 February 2019). This highlights the 

importance of the higher temperatures for increased 

production during the latter part of the 2019 

production season. 

 

Fig. 5 shows the model-simulated (as per AMIP 

simulation) change in the first day of the year when 
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minimum temperature falls below 5°C at the area of 

interest, for a historic (1871 – 1899) and recent (1979 

– 2016) period.    

 

Fig. 5: Frequency distribution of the first day of the 

year when minimum temperature falls below 5°C over 

the focus area, for 1871-1899 (grey) and for 1979-

2016 (back), as per AMIP-style high-resolution 

simulation, using CCAM.  

 

Associated with changing atmospheric greenhouse gas 

concentrations and SST trends, the CCAM-AMIP 

style simulation indicates a likely postponement of the 

first day during the year when minimum temperature 

reaches 5°C. According to the simulation, the first 

instance with minimum temperature falling below this 

cut-off value, has on average moved later with about 3 

weeks during the 20th century.    

 

Conclusions  

Both 2005/6 and 2018/19 can be characterised as 

summers with very late-occurring rainfall over the 

western maize-production region. For dryland maize-

production, this essentially means that cultivation 

occurred after the normal planting window. While 

crop development during 2005/06 occurred during a 

period with 30 – 50% more rain than in 2018/19, 

estimated production increased during the January – 

June period in 2018/19 – not in 2005/06. The very 

positive impact on crop production in 2018/19 versus 

2005/06, is strongly related to the unseasonably mild 

conditions during autumn in 2018/19, as opposed to 

cool conditions in 2005/06. Minimum temperatures 

below 5°C occurred 2 weeks later in 2018/19 than in 

2005/06. According to an AMIP-style simulation by 

CCAM, this is equivalent to the simulated shift in 

occurrence of such low temperatures, as a function of 

changes associated with anthropogenic forcing. This is 

indicative of a potential opportunity to utilise late 

summer rain coupled with relatively high autumn 

temperatures, potentially with increasing frequency 

during the 21st century. Given the lead time essential 

for decision support in agriculture, this potential can 

only be unlocked with the further improvement of 

existing temperature forecast skill (e.g. Lazenby et al. 

2014) still largely lacking as demonstrated by the 

opposite trend in observed versus predicted seasonal 

rainfall and temperature trends during 2018/19.  
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The study explored the statistical links between climate variables and indices and sugarcane yield using the time series 

analysis. Climate datasets derives from KNMI climate explorer, and extracted from 1970-2016. The main datasets are 

GPCC8 rainfall, CRU4 temperature, SST patterns and SLP datasets. The statistical analysis was performed through 

scientific programming by following the R procedures. The methods employed are: Mann-Kendall test, Pearson 

correlation and MLR time series analysis. Annual sugarcane yield has been decreasing since 1980s, partial due to 

climate impacts but there are also non-climatic influences. The study found a strong relationship between  local crop-

drivers and the yield due to its long-cycle (12-24 months) in contrast  to short-lived crops such as maize (3-4 months). 

Surface air temperature is the main climatic factor for sugarcane production in both rainfed and irrigated sugarcane. 

It is evident that in rainfed agro-climatic regions, soil moisture availability as a function of precipitation in the 

preceding season is essential for sugarcane growth and development, and this accelerates the yield in the upcoming 

season.  Hence, sugarcane prediction technique that will incorporate PDSI is desired to improve the forecast skill.  

 

Keywords: Climate impacts, Sugarcane yield, Statistical link, programming and Southeastern Africa  

 

Introduction  

Yamori et al. (2014) reported that sugarcane 

(Saccharum officinarum L.) is a C4 crop which is 

grown in both tropical and subtropical agro-ecological 

zones, mainly for the production of sugar and 

bioenergy. Plants and crops are spatially distributed 

according to climate responses. Hence, C3 (temperate 

plants), C4 (tropical plants) and CAM (semi-arid 

condition plants) plant species are reported to have 

different abilities for temperature acclimation of 

photosynthesis. Sugarcane yield and production have 

been reported to be directly and ultimately affected by 

crop drivers such as evapotranspiration, rainfall, 

temperature, pests and diseases (Everingham, et al., 

2003). Gbetibouo and Hassan (2005) estimated the 

economic impacts of climate change on the major 

South African crops using the Ricardian model. The 

model was based on agricultural data for sugarcane, 

maize, wheat, sorghum, soybean, groundnut and 

sunflower. The study revealed that field crops are 

more sensitive to increased temperatures than to 

precipitation, and thus to greenhouse warming.  

 

This study explores the statistical association between 

climate and sugarcane yield using the time series 

analysis. Figure 1 shows the study area and the area 

which was averaged over south-eastern Africa for time 

series (31-23°S and 28-33°E). The study area 

comprises parts of KwaZulu-Natal, Mpumalanga (in 

South Africa-SA) and Eswatini-ES. It has been found 

that the sugar-belt is vulnerable to rainfall variability 

(Gbetibouo & Hassan, 2005), which affects the annual 

output. 

 

Figure 1: Map of southeastern Africa and the 

sugarcane growing region. Individual sugar mills are 

green dots. The dashed box indicates the area-which 

was averaged for time series analysis (modified from: 

Mbhamali, et al., 2018). 
 

Data and methods 

The station-based monthly GPCC8 rainfall 

(Schneider, et al., 2018), is available through the 

KNMI climate explorer (KNMI-CE) website. An area 

average was calculated over south-eastern Africa 

(Figure 1) for the period from 1970-2016. The rainfall 

and yield time series were compared, statistical links 

explored using the Multi-variate Linear Regression 

(MLR) and correlation methods. PDSI is precipitation 

(P) minus potential evaporation (E), where E is the 

function of temperature and soil moisture content over 

mailto:twmbhamali@gmail.com
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time in a given location (Dai, et al., 2004). Monthly 

averaged CRU4 station-based temperature data 

(Harris, et al., 2014), rainfall, PDSI and temperature 

were related to the yield and tested for its impact on 

the yield over the study area. Sea level pressure (SLP) 

data was obtained from KNMI-CE, and it was used to 

compute the heatmap and perform variable importance 

through MLR. 

  

The HadSLP2 reanalysis interpolation system 

provides SLP time series as discussed in Allan and 

Ansell (2006). The Southern Oscillation Index (SOI) 

from Climate Prediction Center was employed to 

explore the statistical association between the Pacific 

El Niño-Southern Oscillation (ENSO) and sugarcane 

yield. SOI data was extracted from KNMI-CE for the 

period 1970-2016, and used as defined in the study of 

Ropelewski and Jones (1987). 

 

 Niño4 is defined as a monthly ENSO index which is 

calculated by averaging SST anomalies (SSTA) 

(Rayner, et al., 2003) in the central equatorial Pacific 

(5°N-5°S and 160°E and 150°W). The SSTAs that 

exceed 0.5 °C are used to define La Niña and El Niño 

signatures. The Niño4 time series derives from 

averages of Met Office Hadley Centre SST datasets in 

KNMI-CE. In this study it was useful for scrutinising 

ENSO influence in the yield over southeastern Africa. 

The monthly NOAA reconstructed SST V4 (Rayner, 

et al., 2003), has been interpolated to 1°, and was 

drawn from KNMI-CE from 1970-2016. This was 

used for Pearson correlation and MLR analysis to test 

the statistical link with the yield and evaluate its 

importance to sugarcane production. 

 

National sugarcane yield data was extracted from the 

United Nations (UN) Food and Agriculture 

Organisation’s (FAO) database for the period 1970-

2016. The South Africa and ESwatini yield time series 

were used independently because in SA sugarcane is 

largely rainfed while in ES it is 100% irrigated. Hence, 

in Eswatini the storage dams provide a buffer during 

the dry seasons. 
   
The Mann-Kendall test is used to calculate the 

monotonic trends in a time series, and here this 

technique is used as described in previous studies 

(Kendall, 1975). The Mann-Kendall test is non-

parametric and rank based, and is often used for 

detecting monotonic trends in the time series of 

geophysical data (environmental sciences, climate and 

hydrological data). Non-parametric techniques are 

robust and resistant to time series with outliers 

(Lanzante, 1996), hence in this study it was paramount 

to employ this technique. With reference to the -

transformation equation outlined above, this study 

considered a 5% confidence level, by which the null 

hypothesis of no trend was rejected if  The test also 

provides the Mann-Kendall tau () that measures the 

correlation. The Mann-Kendall test was used to detect 

trends in sugarcane yield. However, the former, only 

detects whether the monotonic trend is upward or 

downward. Thus, to quantify for the onset of the trend 

and approximate the potential trend turning points 

(PTTPs) in the time series, the Sequential Mann-

Kendall (Seq.MK) test is robust (Chatterjee, et al., 

2014). The forward sequential (Prog) values ()) of the 

standardised time series derive from the original data 

(), and the backward sequential (Retr) values  are 

approximated using the same approach but beginning 

with the last value of the original time series. In the 

plot of ) and ) curves their intersection shows the 

PTTPs, and the trend is considered significant when  

and .  

 

In this study the Pearson correlation method used the 

Pearson correlation coefficient  to explore the 

statistical links between climate variables and the 

yield. Multi-variate Linear Regression (MLR) analysis 

revealed the relationship between the yields and 

climate variables using the level of significance. The 

MLR is given by: 

 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯𝛽𝑛𝑥𝑛+∈                    (1)  

 

where  is the dependant variable (sugarcane yield),  

denote the independent variables (rainfall, 

temperature, PDSI, SLP, SST patterns, SOI, Niño4),  

is the intercept from the model output,  are the 

coefficients of  terms and  is the standard error. In this 

study it was used to test the importance of climate 

variables in sugarcane yield. The Pearson correlation 

and MLR are also explained in the study of NDVI and 

drought impact by Mbatha and Xulu, (2018). 

 

Results and discussion 

Table 1 presents a summary of the Mann-Kendall 

statistics for sugarcane yield time series from FAO 

database for the two countries. In South Africa the 

yield exhibits a declining yield trend with -

transformation of -4.604 and the value of  and in 

ESwatini the yield ha -transformation of 4.631 and 

thevalue of .  
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Table 1: Mann-Kendall (MK) test statistics for 

sugarcane yield (ton/ha) trends over South Africa and 

ESwatini, and bold -transformation values are 

significant at the 95% level. 
South Africa and ESwatini (FAO yields) 

SA_FAO 𝑧 -4.604 

SA_FAO 𝑝-value 4.15E-06 

SA_FAO Tau (𝜏)  -0.465 

Swazi_FAO 𝑧 -4.631 

Swazi_FAO 𝑝-value 3.63E-06 

Swazi_FAO Tau (𝜏) -0.468 

 

Figure 2 shows the trends detected from a Sequential 

Mann-Kendall trend test method and from the analysis 

there is no potential trend turning points detected. It 

should be noted that these results might be due to the 

time series employed, and demarcating this analysis to 

different agro-climatic zones could produce different 

outcomes. The Mann-Kendall statistic test indicated 

that sugarcane yields have been decreasing since 

1980s over south-eastern Africa. A huge decline of the 

yield was observed during the period from 2010-2016, 

where z-score values were observed to be below -4, 

which is an indication of a significant downward trend 

(see Figure 2). The trend is declining due to increased 

temperature and reduced rainfall (Figures 2a and b; 

Mbhamali, et al., 2017). However, there are additional 

influences which are non-climatic such as pests and 

diseases (Dube & Jury, 2000). These climate variables 

and indices were chosen because of their 

interdependence and potential role in climate 

variability over the study area. 

The Pearson correlation coefficients of 0.68 and0.48 

between temperature and yield were observed 

illustrated in Figures 3a and b. Rainfall and yield have 

a statistical association of PCC = 0.50 and PCC = 0.45 

for South Africa (a) and ESwatini (b), respectively. 

This further indicates that sugarcane farmers must use 

climate prediction for their farm management 

practices, decision-making and policy formulation. 

The abrupt temperature and potential 

evapotranspiration increase tends to reduce the 

amount of soil moisture which then suppress 

sugarcane yield. This implies that despite potential 

rainfall increasing or decreasing, temperature has the 

ability to deplete soil moisture and surface water 

through potential evapotranspiration, which then 

results to crop failure. 

 

Figure 2: Trends detection in sugarcane yield, where 

u(t) is a forward sequential curve represented in solid-

black line and u′(t) is a backward sequential curve 

represented in solid-red line over a) SA and b) Swazi 

(Eswatini). 

 

Figure 3: Heatmap of Pearson Correlation representing statistical association between climatic factors and sugarcane 

yield from 1970-2016 in a) South Africa and b) ESwatini. PCC is defined as +1  for strong positive correlation, 0 

indicates that there is no linear relationship, and -1 means strong anti-correlation. 
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These interactions are incorporated in the PDSI, and 

the study affirms this drought index as a good proxy 

for sugarcane yield because these two are strongly 

correlated (0.7) in South Africa. In ESwatini this index 

explains 50% of cane variation from season-to-season, 

due to irrigation as expected.  

 

Niño4 has    of -0.44 and 0.36 with the yield in SA and 

ES, respectively. These indicate that warming of the 

South-west Indian Ocean (SWIO) decelerates 

sugarcane growth one year after the warm phase of 

ENSO. This was also substantiated with the negative 

relationship between SST patterns and the yield, 

where the  was -0.18 and 0.30 over SA and ES, 

respectively. This suggests that – local climate 

parameters (rainfall and temperature) provide large 

explanation about sugarcane variability in comparison 

to global or remote influences such as ENSO as 

illustrated in Figure 3. 

In the summary of MLR analysis, a statistically 

significant relationship between the drought index 

(PDSI) and surface air temperature with the sugarcane 

yield was observed at 1% level of confidence and the 

-values of 0.01 (PDSI and yield) and 0.03 (temperature 

and yield) over South Africa (Table 2). This statistical 

connection also exist between surface temperature and 

the yield in ESwatini. Although, this is slightly weaker 

than in South Africa as indicated with a -value of 0.10 

at 5% level, and this was expected due to irrigation. 

 

Table 2: Model output from MLR for FAO sugarcane yields (dependant variables) and climatic variables and indices 

are independent variables for the period 1970-2016.  

MLR for South Africa 

 Estimate Std. Error t-value -value Signif. Codes 

(Intercept) 4.851e+01 1.004e+02 0.483 0.6318  

SA_PDSI 5.842e-02 2.248e-02 2.599 0.0131 * 

SA_Precip -1.505e-04 2.009e-04 -0.749 0.4584  

SA_Temp -1.260e-01 5.499e-02 -2.291 0.0274 * 

HadlSST1 1.486e-01 8.900e-02 1.670 0.1029  

HadSLP -4.473e-02 9.905e-02 -0.452 0.6541  

Niño4 -6.986e-02 7.438e-02 -0.939 0.3534  

SOI -2.863e-02 6.432e-02 -0.445 0.6586   

MLR for Eswatini 

  Estimate Std. Error t-value -value Signif. Codes 

(Intercept) 2.413e+01 5.086e+01 0.474 0.6378  

Swazi_Precip -5.737e-05 8.396e-05 -0.683 0.4985  

Swazi_Temp -4.073e-02 2.408e-02 -1.691 0.0987 . 

Niño4 -4.310e-02 3.871e-02 -1.113 0.2724  

SOI -3.193e-02 3.209e-02 -0.995 0.3260  

HadSLP -1.843e-02 5.016e-02 -0.367 0.7153  

HadlSST1 5.250e-03 4.446e-02 0.118 0.9066  

Swazi_PDSI 1.268e-02 9.581e-03 1.323 0.1935   

 

Signif. codes: 0 ‘***’  0.001 ‘**’  0.01 ‘*’  0.05 ‘.’  0.1 ‘ ’  1 where these numbers from 0-1 are -values and the 

order of significant is strongest at  and denoted with ‘***’ while -value = 1 means that the independent variable is 

not statistically significant. 

 

Conclusion  

Sugarcane yield trends are significantly declining as 

indicated with -transformation far less than -4 in both 

countries. This is partial due to drought conditions, but 

it should be noted that there are additional influences 

which are non-climatic in nature. This includes 

sugarcane pests and diseases, monetary policy and 

land-use change. There is a strong statistical 

connection between rainfed sugarcane and climate 

than its counterpart irrigated sugarcane. There is a 

heterogeneous and intermittent intercomparisons 

detected in the statistical links between climate and 

sugarcane yield over southeastern Africa. The 

increasing temperature and reduced rainfall as a result 

of anticyclonic circulation tends to suppress the annual 

sugarcane yields. However, PDSI appears to explain 

much of the sugarcane variability over time at 1-5% 

level in southeast Africa. The results revealed a clear 

evidence of detrimental impacts of drought in 

sugarcane yield, as confirmed with the strong dip of 

the yield during 1992/93 season (sugarcane time 

series not shown). The minimum yields (41.7 ton/ha 

for SA and 90.8 ton/ha for Swazi) were reached. The 
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surface air temperature reveals itself as a key feature 

for sugarcane production, which provides the evidence 

of ENSO induced drought impacts over the sugar-belt 

of southeastern Africa. In addition to other crop-

drivers employed in seasonal climate forecasting and 

sugarcane monitoring and modelling systems, the 

PDSI could be added to improve to forecast skills. It 

should be noted that PDSI uses both temperature and 

precipitation as inputs in contrast to other drought 

indices which use precipitation only. 
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High resolution (1 km) winds derived from satellite-based Synthetic Aperture Radar (SAR) acquisitions are used to 

better understand the spatial variability of coastal winds over the larger Cape Peninsula. Using outputs from a global 

reanalysis, we showed that 80% of the wind variability over the larger Cape Peninsula can be explained by winds 

blowing from either the north-west or south-east. The high-resolution SAR observations are then grouped across these 

two dominant wind directions to characterize the typical surface ocean wind signatures associated with the south-

eastern and north-western wind regimes. We find that the south-easterly wind regime is associated with distinct wind 

shadows across the middle section of False Bay as well as in the lee of Table Mountain. A region of accelerated winds 

extending from Cape Hangklip and across False Bay is also observed. In contrast, north-westerly winds show a 

sheltered region in the north-west corner of False Bay and a region of accelerated winds south-west of Cape Hangklip. 

Spatial variations in ocean winds over the larger Cape Peninsula which are clearly linked to the orography, are not 

represented in global reanalyses products such as the National Center for Environmental Prediction (NCEP) Climate 

Forecast System Reanalyses (CFSR) used in this study. The global reanalysis product also strongly over-estimates 

wind speeds over the shelf regions located between the Cape Peninsula and Cape Columbine, particularly during the 

south-easterly wind regime. The rapid spatial variations in ocean winds observed with the SAR lead to the presence 

of strong and localized wind gradients whose impact on the ocean circulation remains to be studied.  

 

Keywords: satellite oceanography, coastal winds, Synthetic Aperture Radar, Cape Peninsula, wind shadows 

 

Introduction 

Accurate wind observations are essential for the 

monitoring and management of our cities, harbours 

and marine resources. Due to the difficulties 

associated with deploying and maintaining sensors at 

sea, wind observations over the ocean rely quasi-

exclusively on satellite observations. Most 

observations of ocean winds over the ocean are done 

using satellite-based sensors such as scatterometers. 

The existing constellation of scatterometers in space 

provides global coverage of the world’s ocean wind 

fields at a spatial resolution of 25 km but the signal 

observed by scatterometers is contaminated near land 

boundaries, resulting in a loss of data within 20 to 70 

km from the coast (Verhoef et al., 2012).  
 

The Larger Cape Peninsula (LCP) is located south of 

Africa, in the Western Cape province (Fig. 1). It 

encompasses the city of Cape Town, one of the largest 

cities in South Africa and forms part of the southern 

Benguela upwelling region, one of the four major 

coastal upwelling ecosystem in the world.  In the 

southern Benguela, winds control the process of 

enrichment, concentration and retention, which are 

fundamental to the survival and recruitment of pelagic 

fish (Lett et al., 2006). Previous studies have shown 

that resolving spatial variations in nearshore winds is 

essential to understand and model the ocean 

circulation and bio-physical interactions in coastal 

upwelling systems (Capet et al., 2004). This is 

particularly true for the Larger Cape Peninsula (LCP) 

region, where the strongest upwelling occurs on the 

narrow inner shelf and productivity is maximum 

within distances of 20 to 80 km from the coast (Weeks 

et al., 2006). Changes in coastline orientation and 

elevation directly impact on the coastal wind fields 

and on the oceanography of the LCP region. Using 

aircraft observations, Jury (1987) found that during 

deep South Easterly (SE) regimes, when the depth of 

the flow exceeded 1000 m, winds flowing over the 

Cape Peninsula and Cape Hangklip would be 

accelerated with little directional shearing, resulting in 

stronger winds to the northwest of the capes. In 

shallow SE regime, when the SE wind were capped 

beneath a stable inversion layer located between 500 

m - 1000 m, Jury (1987) found that a pronounced wind 
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shadow would develop on the eastern side of False 

Bay and that mountains near Cape Hangklip (Fig. 

1(b)) would steer the SE winds seawards. The strong 

impact of the orography and coastline orientation on 

the winds demonstrated by Jury (1987) emphasises the 

need for high resolution observations of ocean winds 

in the LCP region. 
 

The aircraft observations analysed by Jury (1987) 

were collected at a height of 150 m and with a spatial 

resolution of 10 – 30 km and to date, the impact of the 

orography on the surface oceanic wind fields in the 

LCP has never been quantified at resolutions below 10 

km. In this study, high resolution (1 km) wind 

estimates derived from Envisat Advanced Synthetic 

Aperture Radar (ASAR) acquisitions are used to map 

for the very first time spatial variations in surface 

ocean winds over the LCP.  The impact of the rugged 

topography on the surface ocean winds under the 

predominant SE and North Westerly (NW) wind 

regimes is assessed.  

Figure 1: Colour map of the annual SST climatology 

from a 10 year archive of MODIS-TERRA satellite 

observations. Blue shades indicate colder waters and 

yellow shades indicate warmer waters. The black 

rectangle in (a) shows the Larger Cape Peninsula 

(LCP) region, south of Africa. In (b) the black 

rectangle shows the location of the Cape Town 

offshore box.  

 

Data and method 

An archive of ASAR Wide Swath Medium (WSM) 

resolution images acquired over the LCP between 

2008 and 2012 is used to derive high resolution (1 km) 

ocean surface winds, hereafter referred to as SAR 

winds. Extracting ocean surface winds from SAR 

images requires a-priori knowledge of the wind 

direction, the angle between the wind direction and the 

radar look direction, the SAR incidence angle as well 

as accurate Normalised Radar Cross Section (σ0) 

measurements. These parameters were directly 

derived from the ASAR images except for the wind 

directions which were sourced from the National 

Center for Environmental Prediction (NCEP) Climate 

Forecast System Reanalyses (CFSR). The CFSR 

reanalyses are available at an hourly temporal 

resolution and a spatial resolution of 0.3o between 

1979 and March 2011 and 0.2o beyond March 2011 

(CFSv2 product) (Saha et al., 2014). CFSR therefore 

has a much lower spatial resolution than the ASAR 

dataset and is not expected to show much spatial 

variability near the coast. All ASAR images were 

calibrated to units of σ0 using the open-source NanSat 

(https://github.com/nansencenter/nansat) 22 python 

module. For each image, the σ0 was down-sampled 

from a resolution of 150 m x 150 m to 1 km x 1 km 

grid using Lanczos spatial interpolation. Wind 

directions from the CFSR dataset were interpolated 

onto the ASAR NRCS 1 km grid and the predicted 

wind direction closest in time to the ASAR image 

acquisition were selected. The CMOD5.N 

Geophysical Model Function (GMF) (Verhoef et al., 

2008) was then applied to provide estimates of the 

equivalent neutral wind speeds 10 m above the ocean’s 

surface. Winds from the CFSR product were bi-

linearly interpolated onto the 1 km ASAR grid to allow 

inter-comparisons between the ASAR and CFSR wind 

speeds. The post-processing of the data involved 

removing spurious data present along the edge of the 

ASAR image swath associated with wind speeds 

below 1 m.s -1. 

  

Hourly values of the CFSR wind speed and direction  

inside the Cape Town offshore box (Fig. 1(b)) are 

extracted to identify the predominant offshore wind 

directions. The SAR winds derived over the LCP area 

are then grouped into these 2 predominant wind 

directions and averaged over time to provide 

composite images. These composites are then used to 

image the typical spatial variability experienced over 

the LCP during the 2 predominant wind direction 

regimes. The differences between the model (CFSR) 

and observed (SAR) winds speeds are then derived to 

quantify the  mean bias between the modelled and the 

observed dataset. 
 

Results 
Winds offshore Cape Town between 2008 and 2012 

were predominantly aligned along a NW/ SE axis with 

a larger proportion of SE winds occurring during the 

summer season (Fig. 2). Using the hourly CFSR 

product, we estimate that about 80% of the variability 

can be explained by wind variations occurring along 

that axis. In a recent review on False Bay, Pfaff et al., 

(2019) used 20 years of daily CFSR winds to show that 

https://github.com/nansencenter/nansat)22
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seasonal shifts in the latitude of the South Atlantic 

Anticyclone cause winds to reverse from a 

predominant SE direction in summer to a NW 

direction in the winter, with 80% of the variance 

explained by winds blowing along the NW/SE axis. 

Based on these findings, the SAR wind data were 

therefore grouped into the two dominant SE and NW 

wind regimes. The main objective of this approach 

was to provide maps of the typical spatial variability 

experienced over the LCP region during both SE and 

NW wind conditions. Over the 2008-2012, a total of 

63 ASAR images were collected during SE wind 

conditions over the LCP region, with most acquisition 

occurring over the False Bay region and to the south 

and south-east of False Bay. Less ASAR images were 

available during NW wind conditions, with a total of 

24 images over the LCP region. Based on Fig. 2(d), 

the range of wind speeds observed by ASAR is diverse 

enough and the composites should provide an accurate 

representation of the time-averaged spatial wind 

distribution over the LCP region during both SE and 

NW wind regimes. 

 
Figure 2: Wind Roses from the hourly CFSR product 

extracted at the offshore Cape Town box and over 

2008-2012 period. The legend indicates wind speeds 

in m/sec. (a) shows the frequency distribution of the 

winds for all data points. (b) shows the winds 

distribution over the austral summer months of 

December-January-February (DJF) and (c) over the 

austral winter months of June-July-August (JJA). (d) 

Time-series of the CFSR winds at  the offshore Cape 

Town box aligned along a NW/SE axis. Markers 

showing instances of SAR SE (red) and NW (green) 

winds. 

 

Figs. 3(a) and (c) show wind speeds dropping off 

towards the coast in both SE and NW wind conditions 

with stronger winds generally experienced in water 

depths greater than 200 m and the gradient in the wind 

speed directed along the predominant wind direction 

(along a NW/SE axis). This drop in wind speed is 

significant for both SE and NW wind conditions, with 

offshore wind speeds typically 4 m.s-1 stronger or 

more. During SE winds (Fig. 3(a)), the strongest winds 

occur over the south-west of the LCP region, south of 

False Bay. SE winds are generally associated with 

calm conditions in the north-west region of the LCP, 

near the Cape Columbine headlands (33oS) and further 

north. During NW winds (Fig. 3(b)), the strongest 

winds are generally found in the south and south-

eastern LCP region. Calm conditions during NW wind 

events are encountered north of the Cape Peninsula 

and in over water depth shallower than 200 m. 
 

Since the CFSR product shows little spatial variability  

over the region (not shown) due to its coarse spatial 

resolution, the differences between the ASAR and the 

CFSR wind speeds can be used to reveal the 

magnitude and extent of the spatial variability in the 

LCP region. One of the most striking features 

observed in the SE regime, is a fan-shaped wind 

shadow in False Bay which extends from Kogel-Bay 

to Kalk Bay, over  a length of about 30 km. It is 

approximately 25 km at its widest along the western 

coastline of the bay. The lower winds within the 

shadow are only blowing at around 5 m.s-1, compared 

to the surrounding winds which blow at over 12 m.s-1 

(Fig. 3(a)). As seen in Fig. 3(b), variations in wind 

speeds of about 10 m.s-1 can be experienced within a 

few kilometers as one travels from the north-east 

corner of False Bay to the mouth of the bay. Another 

wind shadow, visible in the lee of Table Mountain, 

extends about 15 km at sea and is approximately 10 

km wide (Figs. 3(a) and (b)). In the lee of Table 

Mountain winds are typically 2m.s-1 weaker than in 

surrounding waters during SE winds. 
  
During SE winds there appears to be a region of 

accelerating winds extending from Cape Hangklip to 

the tip of the Cape Peninsula. When the offshore winds 

blow from the south-east, the winds over the eastern 

LCP regions have a most easterly component. It is 

thought that the presence of the Hottentot Mountain 

range near Cape Hangklip causes the predominantly 

easterly winds to accelerate and be deflected towards 

the south-west along Cape Hangklip. We note that this 

topographic steering of the winds by the orography is 

clearly not captured in the CFSR product. 

 

The spatial variability patterns during NW winds are 

not as distinct as those observed during SE wind 

events. Variations in wind speeds are however present 

in False Bay with the north-western corner of the bay 

being more sheltered from the winds (Figs. 3(c) and 

(d)). Winds in the north-west corner of the bay are 

typically 4 to 5  m.s-1 weaker than those on the eastern 

side of the bay. We note that NW winds are also 

associated with locally intensified winds in the lee of 

Cape Hangklip. 
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Figs. 3(b) and (d) show large discrepancies between 

the CFSR and SAR wind speeds. CFSR tends to 

largely over-estimate the winds in the region north-

west of the Cape Peninsula, and under-estimates the 

winds further at sea. In a SE wind regime, the region 

of discrepancy between the CFSR and SAR winds 

extends further north towards the north-west, from 

34oS to 32oS (Fig. 3(b)). 

 
Figure 3: Composite of SAR winds during (a) SE and 

(c) NW winds. The overlaid arrows represent wind 

directions interpolated from the CFSR product. Panels 

(b) and (d) are time-averages of the differences 

between the ASAR and CFSR windspeeds during (b) 

SE and (d) NW winds. The black contour lines in all 

panels show the location of the 50m, 100m and 200m 

isobaths. 
 

Conclusions 
Winds are the strongest driver of sea state, ocean 

circulation and upwelling in the LCP region. Local 

orography, coastal geometry and differences in 

temperature between the ocean and the adjacent land 

masses drive a high spatial and temporal variability in 

coastal winds through processes such as land/sea 

breezes, wind shadows or funnelling effects. The high 

spatial variability which characterises the LCP regions 

is not captured in the low resolution (25 km) and land 

contaminated (within 50 km of the coast) wind 

products, which are currently used to force all oceanic 

and atmospheric South African numerical models. 

This impedes our ability to monitor and predict the 

coastal marine environment. Using observations 

collected over 5 years, we demonstrated the ability of 

satellite-based SAR sensors to image and characterise 

small scale spatial variations in coastal regions. The 

development of an improved observing capability for 

high resolution wind observations near the coast will 

lead to better sea-state monitoring and predictions and 

serve a wide a range of users such as the South African 

Maritime Safety Authority (SAMSA), Fishery 

industry, Shipping or Port Authorities. Examples of 

downstream benefits include improved predictions of 

harmful algal blooms, coastal erosion, storm surge, 

and wave propagation. 
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We are using data from in-situ observations, climate reanalysis and satellite remote sensing to study the annual cycle 

of the turbulent flux of moisture from ocean to atmosphere also called the turbulent latent heat flux (LHF). We first 

assess if the various datasets adequately represent the intense exchange of moisture that occurs above the Agulhas 

Current system. We are using monthly fields of turbulent latent heat flux and various parameters used to calculate the 

LHF: sea surface temperature (SST), surface wind speed, saturated specific humidity at the temperature of the sea 

surface (Qsst) and air specific humidity at 10 m height (Qa). We use MODIS SST and the satellite derived QuikSCAT 

SCOW wind climatology as reference for SST and surface wind. Compared to MODIS SST, all products 

underestimate the SST in the core of the Agulhas Current. The differences in LHF are due to the difference in Qa and 

surface wind speed. We study the annual cycle of the LHF and its drivers in four locations of the Agulhas Current 

system: offshore Durban; offshore Port Elizabeth; in the Retroflection area and in the shelf water offshore Cape Town 

outside of the Agulhas Current system. The highest LHF of about 250 W/m² is found in the Retroflection area in 

winter. The lowest LHF is 100 W/m² off Port Elizabeth in summer. In Durban, Qsst - Q10 is the main driver of the 

amplitude of the annual cycle of LHF. The annual cycle of LHF follows the wind speed in the Retroflection area. Both 

Qsst - Q10 and wind speed variations drive the annual cycle of LHF off Port Elizabeth. 

 

Introduction 

The greater Agulhas Current system is composed of 

the core of the Agulhas Current which is about 100 km 

wide; the Retroflection region with a loop diameter of 

350 and the Agulhas Return Current that meanders in 

an eastward direction. Substantial turbulent latent heat 

fluxes as well as marine boundary layer modification 

were measured above the core of the Agulhas Current, 

the Retroflection region and the Agulhas Return 

Current (Rouault et al., 2000)]. These measurements 

show that the turbulent latent heat flux which is akin 

to the turbulent flux of moisture at the air-sea interface 

increases substantially in the Agulhas Current system. 

Gimeno et al., (2010) showed that the Agulhas Current 

system is a source of moisture for the Southern Africa 

rainfall. Nkwinkwa Njouado et al. (2018) linked the 

high LHF to higher rainfall above the current and at 

the coast adjacent to the current. The turbulent latent 

heat flux is underestimated in models if the resolution 

does not represent the SST field within the core of the 

current that is about 100 km wide (Rouault et al., 

2003). The core of the Agulhas Current is important 

because of its thermal contrast with the surrounding 

water leading to a fivefold increase in the turbulent 

fluxes of latent heat. Radiosondes launched during the 

ACASEX cruise show that the core of the current 

literally produces a wall of moisture (Rouault et al., 

2000) that can reach up to 2000 m above the Agulhas 

Current. The LHF measured above the Agulhas 

Current were not well reproduced in older climate 

reanalysis (NCEP1, NCEP2 and ERA40). However, 

recent reanalysis for ERA-Interim, ERA5, CFSR and 

MERRA-2 are now available at a higher resolution. At 

the same time numerous new air sea interaction 

datasets derived from satellite remote sensing such as 

SEAFLUX (Curry et al., 2004) have been produced at 

a resolution that allows to represent the core of the 

Agulhas Current. The aim of this study of the air-sea 

exchanges in the Agulhas Current system is threefold: 

(i) explore whether the new climate reanalysis and 

satellite derived datasets have sufficient spatial 

resolution and representations of the LHF; (ii) 

examine the magnitude of uncertainties in the basic 

parameters (wind, SST, surface specific humidity) 

used to calculate the LHF; and (iii) quantify the annual 

cycle of the LHF and its drivers in the Agulhas Current 

system.  

  

Data and method 

Various parameters are analysed including, latent heat 

flux, sea surface temperature (SST), surface wind 

speed at 10 m, specific humidity of air at 10 m (Qa) 

and saturated specific humidity (Qsst). Saturated 

specific humidity is not available for all products and 

is calculated using the Clausius-Clapeyron relation 

and the SST. The averaging periods are ranging from 

monthly to seasonal and are constrained by the 

availability of satellite datasets. When datasets were 
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not available at the same period, for example ERA-40 

we used the same amount of time (8 years) for the 

averaging to have a consistent result. We analysed the 

gridded monthly data (version 2) derived from the 

National Oceanography Centre Southampton (NOCS) 

based on Voluntary Observing Ship (VOS). Two 

satellite-based data products are used, notably the third 

version of the Hamburg Ocean Atmosphere 

Parameters and Fluxes (HOAPS3) product with a 

spatial resolution of 0.5° x 0.5°, and the high-

resolution air-sea turbulent fluxes (SEAFLUX) 

available on a grid of 0.25° x 0.25° (Curry et al., 2004). 

The Moderate Resolution Imaging Spectroradiometer 

(MODIS) is used to provide reference SST data 

because of its very high resolution (4 x 4 km) that 

evidently represents the fine spatial structures of the 

Agulhas current, especially near the coast.  The 

Scatterometer Climatology of Ocean Winds (SCOW) 

is used as reference wind speed and direction in this 

study. Five reanalysis products are used. The Climate 

Forecast System Reanalysis (CFSR, MERRA-2, 

ERA-Interim, ERA 40 and NCEP) 
 

Results 

 

Figure 1: Annual cycles of latent heat flux (W/m²). In 

Agulhas Current off Durban (31.5-32.5°E; 30-31°S), 

off Port Elizabeth (25-26°E ; 34.5-35.5°S), Agulhas 

Retroflection (19-20°E ; 38-39°S) and off Cape Town 

(16-17°E ; 33.5-34.5°S) for SEAFLUX (blue), CFSR 

(red), MERRA-2 (green), ERA-5 (purple), ERA-

Interim (yellow), NCEP2 (cyan), ERA-40 (purple), 

and NOCS (black). Shades areas represent the 

standard errors calculated as the standard deviation 

divided by the square root of the number of years.  

 

In this paper, the first objective is to investigate 

whether the recent climate reanalyses (CFSR, 

MERRA-2, ERA-5 and ERA-Interim), satellite-based 

(SEAFLUX and HOAPS3) and in-situ observation-

based (NOCS) LHF products have a good 

representation of the intense turbulent flux of moisture 

that occurs above the Agulhas Current, compared to 

older reanalyses (ERA-40 and NCEP2), because the 

Agulhas Current is not adequately resolved in the 

coarser-resolution (ERA-40 and NCEP2). HOAPS3 

compares quite well with SEAFLUX, but HOAPS3 

does not have data along the coast. Compared to the 

SEAFLUX LHF, the ERA-40 and NCEP2 LHF fail to 

represent the structure of the Agulhas Current. The 

new reanalysis products, on the other hand, have a 

better representation of the current, therefore, can 

adequately represent the LHF in the Agulhas Current 

system, except ERA-Interim that underestimates the 

fluxes. CFSR is relatively like MERRA-2 and ERA-5 

but has higher LHF. Between the four new reanalyses, 

surprisingly ERA-Interim has the lowest fluxes (100-

200 W/m²). This result is unexpected in view of the 

higher spatial resolution of the ERA-Interim (0.75° x 

0.75°) compared to ERA-40 (2.5° x 2.5°). It is most 

likely due to its low wind speed although the LHF is 

compensated by high values of Qsst-Qa. The 

improved version of ERA-Interim (ERA-5) represents 

better the LHF in the Agulhas region. The phase of the 

seasonal cycle of NOCS LHF is reversed in the 

Retroflection region compared to other products. This 

might indicate that not enough vessels pass through 

the Agulhas Retroflection region. Another reason for 

the uncertainties in NOCS is due to measurement 

uncertainty. To conclude, CFSR, MERRA-2, and 

ERA-5 show good representation of the Agulhas 

Current and will be used for further analysis to 

investigate the relation between the intense flux of 

moisture over the Agulhas Current and the weather 

and climate in Southern Africa, and to validate 

mesoscale atmospheric models such as the Weather 

Research and Forecasting model (WRF) 

 

The second aim of this study is to identify the level of 

uncertainties introduced by the basic parameters: SST, 

wind (U), surface specific humidity (Qa), ocean 

current (Us) used to estimate the LHF (e.g. Equation 

1) 

𝐿𝐻𝐹 = 𝜌𝑎𝐶𝐸𝑙𝑣|𝑈 − 𝑈𝑆|(𝑄𝑠𝑠𝑡 − 𝑄𝑎) (1) 
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The differences between each product and the 

reference products from MODIS are calculated for 

SST, SCOW for wind speed and SEAFLUX for Qsst-

Qa. CFSR SST is higher than MERRA-2 SST 

compared to MODIS SST. This may explain higher 

values of the LHF from CFSR compared to MERRA-

2, as SST is used to compute Qsst. Between all the new 

reanalyses, MERRA-2 has the highest wind speed and 

CFSR the highest Qsst-Qa. ERA-Interim has the 

weakest wind speed in the Agulhas system compared 

to SCOW. This explains the lowest values of the ERA-

Interim LHF. In the Agulhas Current system, CFSR 

and MERRA-2 wind speed are similar. ERA-Interim 

has the strongest Qsst-Qa compared to other 

reanalyses. This compensates for the low wind speed 

in the calculation of ERA-Interim LHF but not 

enough. Qsst-Qa variability is mostly influenced by 

the variation of Qa. The differences in Qa between the 

products clearly have a greater impact than the 

discrepancies in wind speed and ocean surface 

temperature. For the satellite-based products, the 

retrievals of air temperature (Ta) and specific humidity 

(Qa) at the surface continue to be problematic in 

regions with strong vertical gradients. Another source 

of specific uncertainties for the reanalyses is 

incomplete account of the surface current speed. 

Looking at the annual mean of the Agulhas Current 

from the GlobCurrent data repository, the surface 

current speed can be more than 1.5 m/s. During the 

ACASEX (Rouault el al., 2003), Surface current 

speeds of up to 2 m/s were measured. Thus, neglecting 

a 2 m/s current speed at a near-surface wind speed of 

4 m/s may lead to a 50% error in the LHF estimation.  

 

Finally, the annual cycle of the LHF and its drivers in 

the Agulhas Current system is investigated using 

SEAFLUX. SEAFLUX is used to recalculate the LHF 

using a climatology Qsst-Qa and/or wind speed, as it 

has a high spatial resolution (0.25° x 0.25°) and 

reliable SST and wind speed [45]. Three locations, 

representative of various regions of the Agulhas 

Current system (off Durban, off Port Elizabeth and 

Retroflection) and one point outside the Agulhas 

system (off Cape Town) were selected for the 

comparison. In the Agulhas Current system, the lowest 

LHF of 100 W/m² is found off Port Elizabeth in late 

summer. In contrast, the largest LHF of ~250 W/m² is 

in the Retroflection region in winter. In the Agulhas 

Retroflection region, large values of LHF are due to 

stronger wind speed in the Retroflection area. Off 

Durban higher values of the LHF can be explained by 

the difference of specific humidity. Off Port Elizabeth 

and Cape Town, values of LHF can be explained by 

the combination of Qsst-Qa and the wind speed. On a 

shorter timescale (5-day averages climatology), 

correlation between LHF and wind speed is higher off 

Port Elizabeth, in the Retroflection region and off 

Cape Town. Off Durban, the correlation is low. 

Therefore, the wind speed could not be the main driver 

of the amplitude of the annual cycle of LHF in this 

region. To summarize, off Durban, LHF is mostly 

driven by the surface specific humidity. In the 

Retroflection region LHF is mostly driven by the wind 

speed. Off Port Elizabeth it is a combination of the 

specific humidity and the wind speed.  
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3. ATMOSPHERIC AIR QUALITY 

 

Investigating the role of near-surface atmospheric boundary layer moisture flux in supercellular 

tornadogenesis over Gauteng during December 2017 
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The state-of-the-art ERA5 reanalysis dataset from the European Centre for Medium-Range Weather Forecasts 

(ECMWF) is used to investigate the role of near-surface atmospheric boundary layer (ABL) moisture flux in 

supercellular tornadogenesis over Gauteng in December 2017. It was found that negative near-surface ABL moisture 

flux, in association with maximum water vapour concentration, played a role in tornadogenesis of the two supercells 

examined. This may be a significant pattern but more cases need to be analysed to come to a substantial statistical 

conclusion, including an examination of the influence of ABL turbulent fluxes of thermodynamic and kinematic 

parameters in inducing higher amounts of water vapour needed for tornadogenesis. 

 

Keywords: Tornadoes, Surface fluxes, Climatology, South Africa, Severe thunderstorms 

 

Introduction 

Tornadogenesis, a process by which a tornado 

initiates, is one of the most complex and less 

understood physical phenomena. This is especially 

attributed to the various thunderstorms and 

environments from which tornadoes could initiate, and 

the difficulty in observing the very fine scale processes 

at high temporal resolutions (Doswell III et al., 1993). 

Besides well-funded field projects like VORTEX 

(www.vortex2.org), the advent of high performance 

computing has allowed numerical modelling of 

tornadoes at grid spacing of several meters, making it 

possible to study the evolution of some of the most 

destructive tornadoes on record. 

 

An increasing number of studies utilising numerical 

models (e.g. Yokota et al., 2018; Markowski and 

Richardson, 2009; Thompson et al., 2003) agree on at 

least two important ingredients needed for 

tornadogenesis in supercell thunderstorms: an 

abundance of water vapour concentration and large 

vertical vorticity in the atmospheric boundary layer. 

These two ingredients have been found to contribute 

to tornadogenesis by modifying the environment to 

allow the formation of intense vortices associated with 

tornadoes. 

 

The atmospheric boundary layer (ABL) is the lowest 

part of the troposphere which is directly influenced by 

the presence of the Earth's surface making it variable 

in space and time (Stull, 1988). Horizontal and vertical 

transportation within the ABL, which allows for 

mixing and exchange with the free atmosphere above, 

is highly driven by turbulent fluxes of heat, moisture, 

and momentum (Stull, 1988).  

 

Turbulent near-surface fluxes in particular, serve as 

sinks or sources of thermodynamic and kinematic 

parameters and significantly impacts the evolution of 

the entire ABL, cloud formation, concentration of 

pollutants and the initiation of some thunderstorms 

(Sun et al., 2017). This means that to further 

understand tornadogenesis, there needs to be an 

investigation of the influence of these fluxes. An 

understanding of these turbulent fluxes in relation to 

tornadic supercell thunderstorms is also important for 

improved parametrisation of the ABL in numerical 

models, which acts as a coupler between surface 

processes and the rest of the free atmosphere and its 

evolution at all timescales. 

 

The Highveld region of South Africa is notoriously 

known for its severe convective weather, which is 

especially in the form of severe thunderstorms during 

summer months (Gijben, 2012). Some of these severe 

thunderstorms are distinguished by a deep rotating 

updraft, and are therefore specifically classified as 

supercell, from which some result in tornadoes.  

 

The month of December 2017 saw two tornadic 

supercell thunderstorms impact the Highveld of 

Gauteng Province. The first was on the 11th from 

which a tornado was observed in the Vaal Marina area 

at around 1530 UTC and destroyed much property, 

leaving at least 1100 people displaced (SAWS, 2018). 

The second resulted in a tornado in Protea Glen, 

Soweto, on the 30th, at around 1440 UTC from which 

reports indicate that property was damaged and a few 

people got injured (eNCA, 2017). The main objective 

of this study is to investigate the role of near-surface 

file:///D:/www.vortex2.org
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ABL moisture fluxes in the tornadogenesis of these 

two supercell thunderstorms. 

 

Data and Methods 

ERA5 monthly averaged and hourly data on single 

levels from the European Centre for Medium-Range 

Weather Forecasts (ECMWF) are utilised in this 

study. The ERA5 dataset is the state-of-the-art 

atmospheric reanalysis of the global climate produced 

by the ECMWF (Hersbach and Dee, 2016). This 

reanalysis is performed using the 2016 ECMWF 

model cycle (41r2) and an assimilation of hundreds of 

thousands of daily global observations, including 

those from the South African observational network 

through the World Meteorological Organisation’s 

(WMO’s) Global Telecommunication System (GTS) 

(Haiden et al., 2018). Some of the data collected over 

the southern African domain and the surrounding 

oceans include those from synops, METAR’s, 

satellites, radiosondes, buoys, weather stations, ships 

and aircrafts. Table 1 lists a summary of the dataset 

used in this study. 

 

Table 1:  Description of ERA5 dataset used in this 

study. 
Coverage Global  

(in this study: 18° to 38° S, 

15° to 45° E) 
Horizontal resolution 0.25°×0.25°(atmosphere) 

0.5°×0.5°(ocean waves) 

Vertical levels 137 up to 1 Pa  
 

Temporal resolution Hourly 

  
Assimilation system 2016 ECMWF model cycle 

(41r2), 4D-Var 

 

The dataset is analysed for the southern African 

domain, including the immediate oceans south and 

south-east of the continental coastline (18° to 38° S, 

15° to 45° E). A particular focus of the analysis is also 

given to Soweto (coordinates: -26.27, 27.85) and Vaal 

Marina (coordinates: -26.88, 28.23) in the Gauteng 

Province of South Africa. The meteorological 

parameters contained in the data are the surface 

pressure, 2-metre dewpoint temperature, 10-metre 

meridional and zonal wind components.  

 

The near-surface ABL moisture flux  is computed by 

taking the product of saturation specific humidity  and 

horizontal wind vectors  respectively at 2 and 10 

metres above the surface as indicated in Eq. 1 below.  

 

 �⃗� = 𝑞𝑠𝑎𝑡𝑉ℎ
⃗⃗⃗⃗       (1) 

 

𝑞𝑠𝑎𝑡 is used in order to represent the maximum 

amount of water vapour reached at saturation and is 

measured in 𝑔𝑘𝑔−1 while 𝑉ℎ
⃗⃗⃗⃗  is measured in 𝑚𝑠−1.  

 

For measuring  �⃗� , 𝑞𝑠𝑎𝑡 is converted to 𝑘𝑔𝑘𝑔−1, so 

that it is measured in 𝑘𝑔𝑘𝑔−1 ∙ 𝑚𝑠−1. 

 

The near-surface saturation specific humidity is 

calculated as a function of saturation water vapour 

pressure 

 

𝑞𝑠𝑎𝑡 =

𝑅𝑑𝑟𝑦

𝑅𝑣𝑎𝑝
𝑒𝑠𝑎𝑡(𝑇)

𝑝−(1− 
𝑅𝑑𝑟𝑦

𝑅𝑣𝑎𝑝
)𝑒𝑠𝑎𝑡(𝑇)

      (2) 

 

where the saturation water vapour pressure is 

expressed with the Teten’s formula and measured in . 

 

𝑒𝑠𝑎𝑡(𝑇) = 𝑎1𝑒𝑥𝑝 {𝑎2 (
𝑇−𝑇0

𝑇−𝑎3
)}          (3) 

 

where constants 𝑎1 = 611.21 𝑃𝑎, 𝑎2 = 17.502 and 

𝑎3 = 32.19 𝐾are set for saturation over water, and 

𝑇0 = 273.16 𝐾. The gas constants𝑅𝑑𝑟𝑦 =

287.0597 𝐽 𝑘𝑔−1 𝐾−1 and 𝑅𝑣𝑎𝑝 =

461.5250 𝐽 𝑘𝑔−1 𝐾−1 are respectively for dry air and 

water vapour. The variable 𝑇 represents dewpoint 

temperature at 2-meters above the surface, while 𝑝 is 

the surface pressure which is approximately equal to 

the pressure at 2-meters above the surface. 

 

These equations, variables and constants are together 

used to calculate specific humidity which represents 

the amount of ABL near-surface water vapour. A 32-

year climatology of ABL near-surface water vapour 

and moisture flux for the month of December is then 

created for the study area from 1985 to 2016, with 

hourly data used for the analysis of the environments 

of two tornadic supercell thunderstorms in Vaal 

Marina and Soweto during December 2017. 

 

Results and Discussion 

A 32-year climatological analysis for the month of 

December captures near-surface ABL moisture 

content that is variable especially between the western 

and eastern parts of South Africa. Fig. 1a indicates that 

areas east of the Drakensburg mountain range of 

Limpopo, Mpumalanga and KwaZulu Natal provinces 

have relatively higher values of near-surface specific 

humidity compared to the rest of South Africa during 

the December month. This is an indicator that those 

areas have statistically higher amounts of near-surface 

water vapour in South Africa during December. The 

analysis also indicates that the western parts of South 
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Africa are relatively drier near the surface during the 

analysis period. Within the analysis domain, it was 

also found that most of the water vapour near the 

surface is located in the Mozambique Channel.  

Figure 1: An analysis of near-surface ABL specific humidity (shaded, interval of 1𝑔𝑘𝑔−1) and moisture flux (vector, 

in 𝑘𝑔𝑘𝑔−1 ∙ 𝑚𝑠−1). (a) Indicates a December 32-year climatology from 1985 to 2016, while (b) indicates a December 

2017 mean. 

 

Computations of the near-surface moisture flux 

indicates that, climatologically, most of the water 

vapour in the North West, Limpopo, Free State, 

Mpumalanga, KwaZulu Natal and Gauteng Provinces 

(hereafter together referred to as eastern parts of South 

Africa) during the December month originates 

particularly from the southern part of the Mozambique 

Channel and the South West Indian Ocean (SWIO). 

On average, the near-surface specific humidity in 

Soweto during the December month is 11.55 g/kg 

while in Vaal Marina is 11.65 g/kg.  

Figure 2: A time series for near-surface ABL specific 

humidity (in ) in Vaal Marina (blue) and Soweto (red) 

on 11 December 2017 (for Vaal Marina) and 30 

December 2017 (for Soweto). 

Fig. 1b indicates that during December 2017, on 

average, the South African inland and southern part of 

the Mozambique Channel ABL near the surface were 

less moist compared to the climatology. Soweto and 

Vaal Marina were about 1 g/kg less moist 

(respectively about 10.55 g/kg and 10.65 g/kg). This 

suggest that less moisture was being advected into 

Gauteng Province. 

Figure 3: A time series for near-surface ABL moisture 

flux (in ) in Vaal Marina (blue) and Soweto (red) on 

11 December 2017 (for Vaal Marina) and 30 

December 2017 (for Soweto). 
 

On the contrary, Vaal Marina and Soweto, were 

relatively more moist compared to the climatology and 

the 2017 mean on 11 December and 30 December 

respectively. On those respective days, the average 

near-surface specific humidity in Vaal Marina was 

12.19 g/kg and in Soweto was 11.94 g/kg.  
 

An analysis of Vaal Marina ABL near-surface on 11 

December indicates that a maximum specific humidity 

of 13.25 g/kg was reached at 1600 UTC which is 

higher than the day mean of 12.19 g/kg (Fig. 2). The 

same analysis in Soweto on 30 December also 
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indicates that maximum specific humidity was 

reached at 1600 UTC, but was 13.34 g/kg (with an 

almost equal spike of 13.31 g/kg at 1300 UTC) and 

also higher than the day mean of 11.94 g/kg. This is 

significant because tornadoes in Vaal Marina and 

Soweto were respectively observed around 1530 UTC 

and 1440 UTC. This suggest that around the time of 

tornadogenesis in supercell thunderstorms reported in 

those two areas, there was a maximum increase in the 

ABL near-surface water vapour. 
 

Fig. 3 respectively indicates a time series for near-

surface ABL moisture flux () in Vaal Marina and 

Soweto on 11 and 30 December 2017. This reveals that 

at 1600 UTC (during the time of maximum water 

vapour in both areas) there was a sudden reversal of 

moisture flux from positive to negative. 

Mathematically, positive flux indicates that the area is 

acting as a source of moisture, while negative flux 

implies that it is a sink of moisture. Hence positive 

(negative) flux indicates that there is more moisture 

leaving (entering) the area than entering (leaving) it. 
 

This is a significant pattern, as it suggest that in the 

near-surface ABL, negative moisture flux corresponds 

to maximum water vapour during the time of supercell 

tornadogenesis. This means that for the two cases 

examined, for a tornado to initiate, the near-surface 

ABL had to contain relatively higher amounts of water 

vapour which are associated with negative moisture 

fluxes, at least in the storm’s or near the storm’s 

environments. Therefore, near-surface ABL moisture 

fluxes, in association with water vapour concentration, 

seem to have played a role in the December 2017 

supercellular tornadogenesis over the Gauteng 

Province.  
 

Conclusion 

A 32-year climatological analysis during the 

December month indicates that moisture fluxes are 

important for near-surface water vapour transport into 

the eastern parts of South Africa, and seem to originate 

from SWIO and the Mozambique Channel.  
 

An examination of two cases of observed tornadoes in 

Vaal Marina and Soweto during December 2017, 

revealed that negative near-surface ABL moisture 

fluxes, in association with maximum water vapour 

concentration, played a role in supercellular 

tornadogenesis. This role may be significant, but more 

cases of tornadic supercell thunderstorms need to be 

analysed to make a substantial statistical conclusion.  
 

The results of an extended study similar to this may 

contribute toward a probabilistic prediction of 

tornadogenesis in supercell thunderstorms over South 

Africa. It is of interest to also look at the role of ABL 

heat (sensible and latent) and momentum fluxes in 

supercellular tornadogenesis (and their relationship 

with moisture flux), including the influence of 

turbulence on these parameters. This may help 

improve the parametrisation of the ABL in the 

numerical modelling and prediction of severe 

thunderstorms at different timescales. 
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Surface-ozone is a created in the atmosphere through photochemistry (i.e. secondary pollutant) and can negatively 

impact human health. In South Africa, the state of ozone pollution is assessed by using the number of exceedances of 

the ambient (outdoor) concentrations of the South African National Ambient Air Quality Standards (NAAQS). Using 

three of the Tropospheric Ozone Assessment Report exposure metrics: i) maximum daily 1-h average ozone value 

over the entire calendar year, ii) maximum daily 8-h average over the entire calendar year, iii) the 4th highest daily 

maximum, were assessed together with the number of exceedances per year of South African NAAQS, ambient 

surface-ozone concentrations in South Africa were assessed. The study looked at four stations, Diepkloof, Ermelo, 

Lephalale and Witbank. The different metrics assessed different aspect of the impact of ozone on human health. . 

From the study it was shown that the four stations have more years that do not comply to the NAAQS than years that 

do comply. When the Department of Environmental Affairs set the standard for ozone, it was meant to protect human 

health; thus, levels that surpass that standard put health at risk. It was found here that that there are differences in the 

inter-annual variability between the different metrics and the exceedance count of the NAAQS, As all four of these 

metrics are health-based, they should be considered together when describing surface-ozone concentrations, their 

inter-annual variability, and trends in South Africa. 

 

Keywords: Near-surface ozone, Human health, Air pollution, Air quality  

 

Introduction 

Ozone is a secondary pollutant that is created through 

complex photochemical reactions that take place in the 

atmosphere (Monks, et al., 2015).. Surface-ozone can 

have variable atmospheric lifetimes (Monks, et al., 

2015).In the free troposphere, it can have an 

atmospheric lifetime of weeks, which can lead to long-

range transport (Young, et al., 2013).However, in 

urban areas, the atmospheric lifetimes are generally 

shorter (i.e. hours) due in part to increased removal 

(Monks, et al., 2015).Ambient ozone concentrations 

can vary greatly in time and space, particularly in 

urban areas. Ozone has a general diurnal cycle, with 

very low levels at night, and a peak in the early 

afternoon when solar radiation (and thus formation 

through photochemistry) is highest. 

 

Despite its variation in time and space and the 

complexity of its production, ozone’s negative impact 

on human health is well understood and has been 

established. Health impacts include decreased lung 

function (WHO, 2000)). In an effort of improving air 

quality in the country, the Department of 

Environmental Affairs signed   the Air Quality Act in 

2009 and in that the National Ambient Air Quality 

Standards (NAAQS) were established. The standard 

for ozone is 61 ppb over an averaging period (running) 

of 8 hours, and the allowable frequency of exceedance 

is 11 times per calendar year.  The allowable frequency 

of exceedance is the number of times the ambient 

concentrations can exceed the standard and still be in 

compliance with NAAQS. This metric only assesses if 

the 8-hr running average is above 61 ppb, and does not 

give information on by how much the NAAQS was 

exceeded. As health impacts worsen with exposure to 

increasing ozone, it is important to also understand the 

maximum levels that people are exposed to. 

 

In this study, the health-based metrics used to assess 

surface-ozone concentrations in South Africa were 

taken from the international Tropospheric Ozone 

Assessment Report (TOAR) (Fleming, et al., 2018). 

TOAR provided an assessment of various metrics used 

to estimate the health risk and impacts from ozone 

globally.  

 

The three chosen TOAR metrics looked at different 

aspects of the impact to get a holistic understanding of 

the ozone impacts on health.  

These metrics are:  

 Maximum daily 1-h average ozone value 

over the entire year. 

 Maximum daily 8-h average over the entire 

year. Twenty-four 8-h running means were 

calculated per day, as the average 

concentration during that hour and the 

preceding 7 hours. An 8-h running mean was 

valid if at least 6 hours had valid O3 

measurements during the 8-hour period. A 

valid daily maximum 8 -h concentration was 
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calculated if there were at least 18 valid 8-h 

running means during that day.  

 The 4th highest daily maximum, was 

computed if there was a valid daily maximum 

8-h concentration on at least 70% each day 

(Lefohn, et al., 2016).  

In addition, the number of exceedances per year 

of the South African NAAQS 8-hr standard of 61 

ppb was used.  

 

Data and Methods 

Ground-level ozone is measured at numerous 

monitoring sites in South Africa. As this study focused 

on impacts on human health, the sites were selected by 

their proximity to high population centres A 

population density map (data from Stats SA) 

(Statistics South Africa, 2016) was generated using 

ArcGIS. This map was overlain with the South African 

map that has the South African Air Quality 

Information System (SAAQIS) monitoring sites. From 

that it was seen clearly that the areas with the most 

population and monitoring sites were in the Highveld 

area and Limpopo. Areas of high population density 

are important to look at because more people will be 

exposed to the measured concentrations.  

 

The three monitoring networks that had data available 

for this study were Highveld Priority Area (HPA), 

Vaal Triangle Priority Network (VTAPA) and 

Waterberg-Bojanala Priority Area (WBPA). Managed 

by the South African Weather Service (SAWS). Since 

these networks did not start operating at the same time, 

different years were received from the networks. 

However, all data that the sites have collected since the 

beginning of their operation were received from 

SAAQIS (operated by SAWS). The data received 

were hourly averages. Once the data were received, a 

quality check was done to ensure all the data points 

represented realistic observations. The quality check 

involved removing negative values, repeating values 

and values that were way higher than the values that 

were in their vicinity.  Then data completeness was 

calculated and only sites that had years with at least 

70% data completeness (using hourly values) were 

considered. Data completeness was calculated before 

and after quality check was done. From the networks 

only four stations within these three networks (Table 

1) met the criteria. When calculating the metrics, years 

with 70% completeness were used, which means that 

different years were used for each station. The years 

used are shown in Table 1. All calculations, including 

the metrics, were done using Matlab ©. 

 

 

 

 

Table 1: Summary of the stations used. 

 
 

Results and discussion 

In Figure 1 it can be seen that for all four stations, the 

maximum daily 1-h ozone value (blue) has the highest 

values, followed by the maximum daily 8-h average 

(red) then finally the 4th highest MDA8 ozone value 

(green). It must be noted that the 1-h ozone value is 

not a true representative of how ozone is actually 

distributed throughout the day; instead, it only 

indicates the highest reading of the day. 

Lephalale has the lowest ozone values with values just 

below 90 ppb followed by Ermelo values with values 

just above 110 ppb, which is then followed by 

Witbank with values over 140 ppb and lastly 

Diepkloof has the highest values with the highest 

being 315 ppb.  

 

a) Diepkloof 

 

b) Ermelo 
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c) Lephalale 

 

d) Witbank 

Figure 1:  Maximum daily 1-h average ozone value, 

4th highest MDA8 ozone value and Maximum daily 

8-h average for a) Diepkloof b) Witbank c) Lephalale 

and d) Witbank 

 

Figure 1 shows the three metrics calculated at the four 

sites. The next metric to be calculated for the stations 

was the number of exceedances per year of the South 

African NAAQS 8-hour running average greater than 

61 ppb.  Table 2 summarizes results for the metric. The 

allowable frequency of exceedance is 11, and thus all 

years with a value higher than 11 are seen to be out of 

compliance of NAAQS. As the NAAQS were set to 

protect health, these exceedances also indicate that 

health may be at risk.  

 

Table 2: Number of exceedances of daily maximum 8-

h running average values greater than 61 ppb. The gray 

shaded cells are years without data and the red shaded 

cells are years above 11 exceedances.  

 

 
 

 

 

All sites saw numerous exceedances of NAAQS, with 

18 values above 11 out of 29 in Table 2. These 

exceedance counts are used by policy makers in South 

Africa to understand if and when ozone is a problem. 

If the concentrations do not exceed NAAQS, then 

ozone is seen to be within regulated values for that 

year.  

 

However, to get a clear picture of what was happening 

at all the stations, all four metrics need to be used hand 

in hand. The number of exceedances just shows how 

many 8-hour running averages exceeded the standard, 

but it doesn’t communicate by how much exactly. 

From a health perspective, exposure to ambient 

concentration of 62 ppb  of ozone is not the same as 

140 ppb. When calculating the number of 

exceedances, it is considered to be the same, which 

may then lead to incorrect assumptions if other metrics 

are not considered. A low exceedance value does not 

mean that the ambient ozone concentration levels were 

also low. With the three TOAR metrics used here 

(Figure 1) peak values are also considered, and 

different trends are seen. 

 

Diepkloof used nine years to calculate the metrics, five 

out of those nine years had the number of exceedances 

above 11 (2012, 2013,2014, 2015 and 2016). The most 

exceedances were recorded in 2013. However, from 

Figure 1a, it can be seen that 2013 also had high values 

for the maximum daily 1-h average (blue line) but not 

for the maximum daily 8-h average (red) nor the 4th 

highest MDA8 ozone value (green), which peaked in 

2014 and 2016. In addition, the maximum daily 1-h 

average (blue line) also had high levels in 2016 and 

2017; the number of exceedances, however, were not 

the highest those years. Thus, while the number of 

exceedances may have been low those years, the 

maximum peaks were among the highest for the time 

period study (all three lines in Figure 1a). 

   

Ermelo used nine years to calculate the metrics, eight 

out of those nine years had the number of exceedances 

above 11 (2009, 2010,2011, 2012, 2013, 2014, 2016, 

2017). The most exceedances were recorded in 2012 

From Figure 1b it can also be seen that the highest 

values for the other three metrics were recorded in 

2012 as well. The maximum daily 1-h average (blue 

line) had high levels in 2011 and 2012. Similarly, both 

the maximum 8-h average (red) and the 4th highest 

MDA8 ozone value (green) also had high values in 

2011 and 2012.Unlike Diepkloof, the maximum peaks 

for Ermelo were highest in 2012 and so was the 

number of exceedances. 

  

Lephalale used four years to calculate the metrics, one 

year out of those four years had number of 
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exceedances above 11 and that year was 2015. 

However, from-Figure 1c, it can be seen that 2015 also 

had high values for the 4th highest MDA8 ozone value 

(green line) but not for the maximum daily 8-h 

average(blue). The maximum daily 8-h average 

peaked in 2014 and the maximum daily 1-h average 

peaked in 2016. However, 2014 and 2016 recorded 

one of the lowest exceedance values.  Thus, while the 

number of exceedances may have been low in those 

two years, it was those two years that had maximum 

peaks for the maximum 8-h average and maximum 1-

h average respectively.  

 

Witbank used seven years to calculate the metrics, four 

years out of those seven years had the number of 

exceedances above 11(2012, 2013,2014,2016). The 

most exceedances were recorded in 2013. However, 

from -Figure 1d, it can be seen that 2013 was not the 

year that had the highest values for any of the three 

metrics. All three lines in Figure 1d show that the 

maximum peaks were in 2016 during the time period 

study. Although 2016 had a number of exceedances 

above 11, its 22 is lower than the number of 

exceedance in 2013 which was 64. Thus, while the 

number of exceedances may have been high in 2013 

the maximum peaks were not the highest in that year. 

It was in 2016 that saw the highest maximum peaks.  

 

Conclusion 

From the study it was shown that the four stations have 

more years that do not comply to the standards than 

years that do comply with the standard. When the 

Department of Environmental Affairs set the standard 

for ozone it was meant to protect human health thus 

levels that surpass that standard become a health 

problem. However, to get a clear picture of what is 

happening different metrics need to be used. It was 

found here that that there are differences in the inter-

annual variability between the different metrics and 

the exceedance count of the NAAQS, As all four of 

these metrics are health-based, they should be 

considered together when describing surface-ozone 

concentrations, their inter-annual variability, and 

trends in South Africa.  
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Surface ultraviolet (UV) radiation is affected by many factors such as ozone and aerosols. An increase in natural and 

anthropogenic aerosols has been observed in Pretoria over the years. Therefore, it is important to understand the effects 

of aerosols on UV radiation. This study will investigate the relationship between UV and aerosol optical depth over 

Pretoria using one year (i.e. 2016) of data. The relationship between AOD and UV was explored through a simple 

methodology.  Firstly, the AOD and UV annual cycle was defined through graphical representation. The relationship 

between AOD and UV was expressed through the use of the RAF equation before the results were tabulated. Both 

steps used monthly averages of AOD and UV. The RAF method confirmed an undeniable relationship between AOD 

and UV (0.06% increase of UV caused by a 1% decrease in AOD). AOD and UV values in summer months are larger 

compared to the rest of the year.   Since clouds play a large role in affecting the amount of UV radiation that reached 

the earth's surface, by considering only cloud-free days, a stronger relationship between UV and AOD can possibly 

be found. 

 

Keywords: AOD, Correlation, Pretoria 

 

Introduction 

The effect of aerosols on ultraviolet (UV) radiation has 

not been studied as well as the effect of ozone on UV 

radiation (Lee, et al., 2013).  With the increase of 

aerosols over recent years the effects of aerosols on 

UV radiation has become more important (Kim, et al., 

2014). 

 

UV radiation is defined as a band in the 

electromagnetic spectrum (Chesnutt, 2019). UV has a 

wavelength of 100 – 400 nm which can be divided into 

three categories: UV-C (100-280 nm), UV-B (280-315 

nm) and UV-A (315-400 nm). UV-B radiation is a 

function of aerosols, cloud cover, solar zenith angle 

(SZA), ozone, altitude and latitude (Sahai, et al., 

2000). All these parameters affect the amount of UV 

that penetrates the atmosphere, but aerosols, in 

particular, can absorb or scatter more than 50% of UV-

B (NASA, 2019). Overexposure to UV-B has 

significant health implications on human beings 

including skin cancer and immunologic response 

(Goettsch, et al., 1998). Measuring UV radiation using 

the UV Index can raise public awareness on excess 

exposure to UV radiation (Lopo, et al., 2014). 

 

Aerosols are fine matter suspended in the air, which 

are predominantly in the troposphere (Tesfaye, et al., 

2011). Some aerosols are produced in nature 

(examples are fog, dust, and volcanic eruptions) while 

some are a product of human activities such as fossil 

fuel emissions. The degree to which aerosols hinder 

the transfer of light in the atmosphere is referred to as 

the aerosol optical depth (AOD). The long-lived effect 

of aerosols on the earth radiation balance happens in 

areas where the largest accumulation of aerosols such 

as smoke and dust is found (Ross, et al., 2003). The 

highest AOD values occur mostly in spring, 

predominantly in the southern parts of the hemisphere 

while South Africa in particular, has its highest record 

in mid-winter to mid-spring (June-September) 

(Adesina, et al., 2016).  

 

 This project aims to investigate the annual cycle of 

UV and AOD and to investigate the correlation 

between surface UV-B radiation and AOD over 

Pretoria, South Africa. Studies like the one of Kim, et 

al (2014) found that there was a negative correlation 

between the same parameters. By defining the cycle of 

UV and AOD, the investigation will get one step closer 

in determining if the results will match the information 

presented in the recently mentioned study. 

 

Data and methods 

The AOD daily data was collected from the National 

Aeronautics and Space Administration (NASA) online 

Giovanni portal for 2016. The AOD data was 

measured using an instrument designed for air quality 

and ozone measurements called the Ozone Measuring 

Instrument (OMI) (Ozone Monitoring Instrument, 

2018). 
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The hourly UV-B radiation data was for a period of 

one year (2016) from the South African Weather 

Service (SAWS) for the Erasmusrand, Pretoria station. 

The weather station at Pretoria, South Africa (25.81° 

S, 28.49° E) had an altitude of 1228 m above sea level. 

The instrument that was used to measure UV-B was 

the solar light 501 UV-Biometer instrument (Cadet, et 

al., 2017). The UV-B data was converted from 

minimum erythemal dose (MED) to UV index (UVI) 

values. UVI describes the level of UV radiation. The 

equation to calculate UVI is as follows: 

 

UVI = (
x

3600
) × 40 …Equation 1 

 

Where 1 MED is equal to 210 𝐽𝑚−2, 3600 is the 

number of seconds in an hour, 𝑥 = 𝑀𝐸𝐷 × 210 in ℎ−1 

and 𝐽𝑚−2 respectively. 

 

In this paper, the radiation amplification factor (RAF) 

(Eq. 2) (Massen, 2013) was used to approximate the 

effects of a small percentage change of AOD on UV 

radiation. RAF is the logarithmic ratio of the 

comparative variations between AOD and UV 

radiation. The interpretation will be as follows; an 

increase in the percentage of UV is caused by a 1% 

reduction of AOD.   Monthly averages of these RAFs 

were produced. Note that only cloudy days were used 

for this analysis. The following equation was used to 

calculate the RAF; 

 

-RAF=
ln (

𝑈𝑉𝐵1
𝑈𝑉𝐵0

)

𝑙𝑛(
𝐴𝑂𝐷1
𝐴𝑂𝐷0

)
  … Equation 2. 

 

Where UVB0 and UVB1 are the first and second UV-

B radiation respectively, similarly AOD. 

 

Results and discussion 

AOD was evaluated for only one year (i.e. 2016). It 

can be seen (Fig. 1) that AOD average values vary 

from 1.10 - 1.71 throughout the year. February has the 

highest mean AOD value with a maximum of 2.07; 

while November has a peak of 4.07. Approximately 

60% of 2016 has an AOD value of above 0.72. AOD 

seems to increase in September and thus becoming 

extremely high as summer sets in. The increase might 

be due to dust accumulation within the atmosphere, as 

spring is a windy dry season in South Africa. In this 

case, the highest AOD values do not occur in spring, 

but rather, spring is when the values began to increase. 

However, just like the article by Adesina, et al. (2016), 

winter (June-August) seems to carry the lowest AOD 

values in the year. AOD values are normally higher in 

areas of high population and industrialization like the 

study area chosen for this study (Roy, 2007). 

Furthermore, these factors (including cloud cover) are 

already at play in rising the overall average AOD 

values before considering the seasonal climate.  

 

 
Figure 1. Monthly mean for 2016 AOD at 483.5 nm 

over Pretoria. 

 

It can be observed that UV radiation (Fig. 2) has its 

highest (lowest) reading in summer (winter), 

particularly in January (June) being the month with the 

highest (lowest) UV average. 12 pm values are the 

highest because sunlight has a more direct path and 

passes through less atmosphere. This pattern is similar 

to that shown in other studies (Cadet et al. 2018). 

 

 
Figure 2. The monthly mean (12:00 local time) for 

UVI at Pretoria. 

 

Table 1, shows that the RAF values are slightly higher 

in December. There are no drastic changes in the 

values of RAF throughout the year, except for negative 

values. June has the lowest value in the whole year, 

this could mean that the month experienced fairly low 

values of AOD (mean=0.1) while the UV values 

(mean=1.6) are relatively high (Fig. 1 and 2). 

Furthermore, according to research done by Prakash, 

et al. (2015), RAF can explain sensitivity, with large 

values of RAF indicating greater sensitivity of UV to 

AOD changes. Therefore, this could be the reason for 
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November having extremely high values of UV and 

vice versa for lower values. 

 

June and December are minimum and maximum 

months of the year respectively. This means that a 1% 

decline in AOD led to a 0.02 - 0.65% increase in UV. 

The average RAF for all months is 0.06 is the year 

RAF average, i.e. 0.06% increase in UV with a 

reduction in AOD.  

 

Table 1. Calculated RAF values for each month  
Month RAF 

January 0.07 

February 0.11 

March 0.15 

April -0.25 

May 0.08 

June 0.03 

July -0.12 

August -0.12 

September 0.07 

October 0.15 

November -0.11 

December 0.65 

 

Conclusion 

This study investigated the annual cycle of AOD and 

UV during 2016 as well as the relationship between 

AOD and UV using RAF. During summer, both AOD 

and UV values are the highest. 

 

According to the RAF, there is a negative relationship 

between AOD and UV i.e. when UV increases, AOD 

tends to decrease. Even though the UV range is smaller 

as opposed to the AOD range in this relationship. It is 

apparent that cloud cover plays a major role on surface 

UV, so further investigations will produce a better 

quality of results by removing the effects of clouds. 

There are 134 clear-sky days that will used as the 

analysis proceeds. 
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The study argues that hydro-meteorological events experienced in the SADC region are a threat to progress made 

towards attainment of Sustainable Development Goals namely, SDG2- Zero Hunger, SDG3- Good Health and SDG 

6-clean water and sanitation. The study found that extreme weather events in 2018/19 posed a threat to SADC socio-

economic progress of the region and progress made on SDGs. The paper recommends adoption of public and private 

partnership investment in high-resolution early warning systems, smart agriculture and indigenous knowledge systems 

to ensure, continued progress on SDGs and household food security for rural and urban households who are 

increasingly vulnerable to extreme weather events 
 

Keywords: SDGs, SADC, Food security, Hunger, Cyclones, Malnutrition, Weather extremes, Droughts, Floods   
  
Introduction and Background   

When the world transitioned from Millennium 

Development Goals to Sustainable Development 

Goals in 2015, global leaders set in motion a new 

development trajectory set to lapse 2030 and beyond. 

The Agenda 2030 on Sustainable Development set in 

motion an ambitious plan to chase after 17 global goals 

and 169 targets in 15 years. Achievement of these set 

goals and targets would inadvertently result in a better 

future for all, across the world with the promise of 

leaving no one behind (United Nations, 2015). Over 

the past four years, many organisations and states have 

channelled resources in order to ensure the 

achievement of these goals. Some significant progress 

has been realised in some parts of the world, including 

in Africa.  According to the UN (2019), the world was 

still off track in meeting the set goals with need to 

revamp action. The attainment of these goals is 

particularly the imagined ideal for many states in 

Africa, particularly in the SADC region where stakes 

were very high.  
 

There is an increase in extreme weather events as if we 

were living in the post 2°C era already. The world is 

experiencing some of the most unprecedented extreme 

weather events that could be attributed to climate 

change such as extreme flooding, cyclones, runaway 

fires and extreme droughts to mention but a few 

(World Meteorological Organization - WMO, 2019). 

Munich RE (2019), noted that in the first half of 2019 

already global losses of $42 billion was incurred with 

Cyclone Idai’s cost pegged at $2 billion. The 

devastating cyclone left 1.85 million people in need 

and 1.9 million people in need of food aid, according 

to (United Nations Office for the Coordination of 

Humanitarian Affairs- OCHA, 2019). Given that the 

world is still battling to come up with concrete plans 

for climate adaptation and resilience, the current 

events present challenges for many marginalised 

communities without a proper livelihood and food 

security safety nets as such events increase their 

climate vulnerability. 
 

The SADC region is grappling with several 

environmental challenges such as pollution, climate 

change, poverty and inequality which threatens the 

region’s economic and livelihood security (Omisore, 

2018; Mubecua & David, 2018; Muchuru & Nhamo, 

2019; Nhamo & Agyepong, 2019). There is a fear that 

failure to achieve the SDGs can result in social and 

political instability. The stakes for SDGs for Africa are 

therefore much higher with only ten years left to 

achieve the set goals. This paper seeks to highlight the 

implications of extreme weather events that were 

experienced during the 2018/19 summer rainfall 

season in Southern Africa on selected SDGs. 
 

The little progress that has been made in achieving 

SDGs thus seems to be under threat, notably in Africa, 

where we have witnessed a wide range of extreme 

weather events affecting the SADC region and beyond 

in the past five years. The Intergovernmental Panel on 

Climate Change-IPCC’s Special Report (2018) made 

an essential acknowledgement that climate change-

related extreme weather events are indeed a threat to 

the achievement of SDGs.The report noted that 

climate change would scuttle efforts to achieve 

sustainable development and poverty. In support of 

that notion, the World Economic Forum (2019), 

highlighted that extreme weather events are the 

biggest threat to the global economy in 2019. 
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Methodology  

Given that this study is focused on the 2018-2019 rain 

season, the data used for this study is focussed on that 

period only. In that regard, the study made use of data 

from Copernicus GDO- Global Drought Observatory 

to map the precipitation amounts and to detect 

chlorophyll levels during the 2018/2019 agricultural 

season. The database also provided a platform to 

cross-compare seasons with previous years. GDO also 

provide a Risk of Drought Impact for agriculture Index 

that showed the expected impact of the drought on 

agricultural production. Other sources of data include 

hydrological data from the Zambezi River Authority 

and data from South Africa’s Department of Water 

and Sanitation. Secondary data analysis of the United 

Nations, its agencies and other member state agencies 

were used to complement the data from the 

Copernicus Emergency Management Service.  
 

Results and Discussion  

The research found that there are two extremes that 

have implications on agriculture and food security in 

the region which threaten the achievement of SDG 2, 

3 and 6. The region faces drought in at least nine of 

SADC member states with drought magnitude ranging 

from High, Medium and Low. The drought is set to 

affect about 19.5 million people at varying magnitude, 

as shown in Figure 1 and Figure 2.  

Figure 1: Hydrometeorological Extremes in SADC 

Region during the 2018/2019 rainfall season  

Source: Copernicus Global Drought Observatory  

(2019) 
 

 
Figure 2: Population under drought risk within the 

SADC region 2018/2019 rain season 

Source: Author Based on Copernicus Global Drought 

Observatory (2019). 

 

The other extreme that is shown in Figure 1 is the 

higher than average rainfall that was received in the 

late summer season mainly between April and May 

especially over the area around Mozambique, Malawi 

and Zimbabwe due to the double effect of Tropical 

Cyclone Idai and Kenneth. Evidence shows that the 

record sea surface temperature that has been observed 

by Copernicus Climate missions and also NOAA led 

to the development of high category cyclones in the 

Mozambique channel. The compounded effect of 

rising sea level, storm surges and tropical cyclones led 

to disastrous floods that affected 4 SADC countries in 

March and April of 2019. An extremely high amount 

of rainfall was also received in the Eastern Cape 

particularly in Port St Johns as well as parts of the Kwa 

Zulu Natal province especially in around eThekwini 

metropolitan area.  

 

The higher than usual rainfall that was received in the 

area led to flooding in some of the countries mentioned 

resulting in loss of lives, property, infrastructure and 

livelihood security. Due to flooding some homes and 

granaries were swept away triggering a food and 

health crisis. Vast tracks of near harvest stage crops 

were swept away triggering instant food insecurity as 

the harvest and livestock were swept away. 

 

The flooding that occurred in 2019 occurred during the 

harvest period, which is usually around March 

stretching to April According to a SADC report. 

Tropical Cyclone Idai, led to the destruction of 

778,822 hectares of cropland which further worsened 

the challenge of food insecurity due to drought in other 

parts of southern Africa (See Figure 1) (SADC, 2019). 

The two tropical cyclones Idai and Kenneth added 

about 1.8 million people onto the food insecurity 

figure. This is problematic as southern Africa is one of 

the few regions where food insecurity is increasing 

(Food and Agricultural Organization- FAO, 2019). 

Statistics from FAO shows that food insecurity has 

been increasing in Southern Africa and parts of Asia 

while the rest of the world food insecurity is 

decreasing. 

  

According to Dube and Nhamo (2018), over the last 

five years, the region experienced one of the worst El 

Niño droughts in history which led to severe water and 

food shortages in the region. The region only managed 

a 0.5% food insecurity decline in 2018.  The prospects 

of achieving Zero hunger – SDG 2, therefore, remains 

a pipe dream that is unlikely to be met, given the 

ravaging meteorological droughts and extreme rainfall 

that are on the increase in the SADC regions both in 

terms of intensity and magnitude. This is even more so 

when one considers that due to Idai crops were wiped 

off and livestock destroyed. In addition, farming assets 
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such as farming equipment were also swept away, 

which affected and will affect the capacity for 

communities to produce their food in the 2019/2020 

rainfall season unless tillage services provided through 

other means.  

 

A combination of drought and flooding have been the 

key drivers of malnutrition food insecurity and 

malnutrition in the region amongst children, pregnant 

women and HIV positive and  TB patients (FAO, 

2019). Figure one and two shows that several people 

will be affected by the droughts that affected the 

2018/19 agricultural season. Reports indicate that as a 

result of the droughts in Mozambique 8,7 million will 

suffer as a consequent of drought exposing them to 

hunger and malnutrition between 2019 and 2020. In 

Zimbabwe, the drought and post-impact of the 

Cyclone Idai induced floods that were expected to 

have a devastating impact on the economy and 

employment patterns which would further render the 

population vulnerable to food insecurity, disease and 

malnutrition (see Figure 1 and 2).  

 

The drought in the parts of Angola which is part of the 

catchment of the Zambezi River had seen far too low 

water flow in the Zambezi River and consequently one 

of the worst record low water levels Lake Kariba 

which is an essential source of electricity for Zambia 

and Zimbabwe as can be seen in Figure 3. Due to low 

water levels, Zimbabwe has been forced to go under 

persistent load shedding, which lasts anything between 

18 and 24 hours in some instances. The energy 

regulator in Zimbabwe reported that as of September 

energy production at Kariba Power station had fallen 

from 1050MW to a 245MW owing to low water 

levels. Electricity shortage, among other things, will 

severely affect winter cropping and market gardens as 

it would be almost impossible to complete irrigation 

schedules for cropping further worsening the impact 

of the drought and food insecurity. Food price hikes 

are inevitable, which will further reduce access to both 

quantity and quality food for the marginalised. The 

impact will be mostly felt by vulnerable groups of 

people who include: the elderly, the sick and pregnant 

women, with lasting impact on their health and 

nutrition status. 

 

 

 
Figure 3: Lake Kariba water levels as of 29 July 2019 

in comparison to the last ten years 

Source: Zambezi River Authority (2019) 

 

The uncertainties brought about by the land debate in 

South Africa compounded with drought will likely see 

food prices going up in a country that is battling 

poverty, inequality, HIV and TB. Such a scenario will 

increase morbidity, which will hamper progress 

towards SDGs 2,3 and 6. Figure 4 shows that several 

areas in South Africa are water-stressed, which can 

also affect irrigation, agriculture and water and 

sanitation provision, further heightening food 

insecurity in South Africa and the region. The map 

shows that drought areas that have been identified in 

Figure 1 have surface water problems as signified by 

the red and orange dots to yellow dots in South Africa, 

Lesotho and also Swaziland (Eswatini). The drought 

across South Africa will result in water supply 

challenges in the mostly urban population imposing 

challenges for the country to reach its water and 

sanitation needs, which can worsen diseases and 

sickness. 

Figure 4: Surface water storage as of July 2019 in 

South Africa. 

Source: Department of Water and Sanitation (2019) 

 

Increased incidences of drought are concerning in 

SADC, which calls for a new approach to agricultural 

practice in order to ensure community climate 

resilience for sustainability, in light of increased 
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frequency of drought and severity. There is need for 

academics and communities to come up with better 

ways of dealing with repeated occurrence of droughts 

in the region given their knock-on effect on livelihood 

security. The rural and urban populace can pursue 

various options. A call to return to combined use of 

agro-ecologically based management strategies and 

the use of traditional small grains crops, that are 

adapted to the climate can be an option that can be 

explored to abate hunger and malnutrition. Hadebe et 

al. (2017), noted that some of the traditional and 

indigenous crops such as sorghum which is grown in 

almost every SADC countries have high water 

efficiency which makes it good climate adaptation 

crop. This will call for the protection of traditional 

seedbanks which are currently being contaminated and 

depleted.  

 

Urban agriculture can take advantage of the 

inexpensive use of hydroponics and drip irrigation to 

ensure a buffer for hunger and be a  sustainable supply 

for nutritious, healthy foods. Venter (2019), supports 

the use of hydroponics in climate change areas to 

ensure food security for a healthy society, given the 

numerous advantages offered by this farming system 

which offers an all year cropping season, better yields, 

a 40% less water usage compared to traditional 

cropping methods and better disease management 

amongst other advantages. 

 

Conclusions and Recommendations  

The SADC region is facing severe challenges caused 

by hydrometeorological challenges such as flooding 

and extreme drought, which undermines the capacity 

for household food security and national food security. 

Due to interlinkages with other SDGs, failure to ensure 

food security will result in failure to meet other SDGs 

such as SDG3 and also SDG6. The impact of 

hydrometeorological droughts is far-reaching as 

previous records indicate that in years of drought the 

GDP of the SADC region tends to decline with a 

spiralling effect on employment patterns given that 

regional economies are agro-based. There is, 

therefore, need to come up with projects that ensure 

household food security in both rural and urban 

migration that are water efficient. Governments also 

need to come up with plans to ensure that poor 

peasants are insured from increased droughts and 

flooding. Most households, consequently, fail to meet 

their food needs. Recent droughts have also resulted in 

most urban areas failing to meet their water and 

sanitation needs. SADC member states need to come 

up with inexpensive plans that budgets for most 

recurring droughts and put measures to build 

community resilience.  Most importantly there is need 

for meteorological service departments to invest in 

robust system with capacity to undertake seasonal to 

decadal predictions so as to meet and better manage 

extreme disaster in a manner that does not disrupt 

progress made towards meeting SDGs. 
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During March 2019, a Unified Model convective-scale ensemble prediction system over the South African domain 

was implemented at the South African Weather Service for testing and verification. During the same time, a multi-

model ensemble prediction system was also under development, covering the Southern Africa Developing Community 

domain. Using the case of the KwaZulu-Natal floods in April 2019, it was found that the convective scale ensemble 

indicates more localised and concentrated regions of heavy rain, whereas the multi-model system predicted higher 

rainfall totals over a much larger area. 

 

Keywords: convective scale ensemble, multi-model, probability forecasts, predictability  

 

Introduction 

Most Numerical Weather Prediction (NWP) systems 

provide a good enough representation of the predicted 

weather that they can be used to provide fundamental 

automated weather forecasts directly from the model 

output. However, in general, it is recommended that 

some post-processing should be used to calibrate 

computerised forecasts (Robertson et al., 2013). Any 

NWP process is dependent on the observations 

assimilated with the generation of the analysis (e.g., 

field representing the current state of the atmosphere). 

Due to this sensitivity to these initial conditions, any 

inherent error in the initial assimilation process or 

observations data can result in a significant error in the 

resulting forecast. Therefore, even with the best 

observations and data assimilations techniques, a 

perfect analysis is not possible, and consequently, 

neither is a perfect forecast (Kalnay, 2003). An 

additional error in NWP is the inherent modelling 

errors due to the understanding, simplifications and 

assumptions made in the dynamic and physics 

calculations. These errors differ between different 

NWP systems due to the differences in the 

applications of the dynamical and physical processes. 

An ensemble of forecasts addresses these weaknesses 

in NWP. The uncertainty in a weather forecast can 

vary widely from day to day according to the synoptic 

situation, and the ensemble approach provides an 

estimate of this day-to-day uncertainty. 

  

Convective instability adds a new scale of forecast 

uncertainty, which convective permitting ensemble 

systems can also address (Stein et al., 2019). The 

ensemble is designed to sample the spread of the 

forecast and results in probability forecasts to assess 

the likelihood that certain outcomes will occur. 

 

An ensemble is attained by adding or subtracting small 

perturbations to the analysis field to attempt to address 

the uncertainty within the initial conditions. The 

resulting difference or size of the spread in the 

forecasts from the different initial conditions will 

either increase or decrease the confidence in the  

forecasts. Due to the computational costs of running 

an ensemble (multiple forecasts), the resolution of the 

convective scale ensemble members is generally 

double that of the deterministic (single) forecast. An 

alternative approach to reduce the costs of creating an 

ensemble, a poor man’s ensemble (Ebert, 2001) is 

created by combining the forecasts from different 

deterministic forecasts generated from different NWP 

systems at various operational centres (Landman et al., 

2012). 

 

Data and Methodology 

During March 2019, a Unified Model (UM) 

convective-scale ensemble prediction system 

(CSEPS) with a 4.5 km horizontal resolution was 

implemented and had since been running regularly at 

the South African Weather Service (SAWS) for testing 

and verification. The ensemble domain covers South 

Africa and consists of 12 members, with each member 

receiving initial- and lateral boundary conditions from 

the Met Office’s global ensemble prediction system 

(MOGREPS-G) (Hagelin et al., 2017). In addition to 

the UM-CSEPS, a multi-model ensemble (MMENS) 

prediction system is also under development and 

testing within SAWS, covering the whole Southern 

Africa Developing Community (SADC) domain. The 

global deterministic NWP models used in the 

MMENS are from the 1) German Weather Service’s 

(DWD) ICON, 2) Met Office’s Global Atmosphere 

(GA), 3) Global Forecasting System (GFS) and 4) the 

SAWS in-house regional UM 4.4 km deterministic 

run. All members are resampled to a common ~6 km 

horizontal grid, and additional members are achieved 

through pseudo-ensemble methods (Theis et al., 2005) 
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The resulting ensemble, therefore, also consists of 12 

members, similar to the CSEPS. 

  

The KwaZulu-Natal flood in April 2019 is used as a 

case study to evaluate the performance of both the 

CSEPS and MMENS performance. During the 

evening of 22 April and into the morning of 23 April, 

a significant amount of rainfall fell over the southern 

parts of the KwaZulu-Natal (KZN) coast. The rain was 

the result of a cut-off low which developed over the 

Eastern Cape Province but intensified along the KZN 

coast. The resulting floods and mudslides led to 67 

fatalities, the displacement of ~1260 people and an 

estimated cost of R1 trillion in damages 

(Dailymaverick, 2019). In Fig. 1 the four rainfall 

stations from SAWS which observed the highest 

amount of rainfall during these 24 hours are plotted, 

and the accumulated rainfall plotted. It is noted that 

Port Edward recorded 398.2 mm and almost 100 mm 

during the evening of the 23rd.  

 

 
Figure 1: Map indicating the location of the four 

rainfall stations and the corresponding hourly, 

accumulated observed rainfall from 21 to midnight on 

the 23rd of April 2019 

 

Results 

During the time of the event, operational forecasters at 

SAWS had access to UM deterministic NWP guidance 

for issuing of warnings (SAWS currently have 4 km, 

and 1.5 km horizontal resolution UM deterministic 

runs operationally). However, in this study, we are 

looking into the spread of possibilities the two 

ensemble systems provided. In Fig. 2, the CSEPS 00Z 

forecast from the 22nd shows the 12-member 

accumulated rainfall predicted for the 48 hours from 

midnight 22 April to midnight of the 24th of April 

2019. All members indicate the high amounts of rain 

over the southern parts of the KZN coast, with member 

nr. 7 indicating the largest area expecting rainfall 

greater than 150 mm over the two days.  

 

 
Figure 2: The 12 members of the CSEPS: total rainfall 

(mm) predicted for the 48-hour period of 00Z 22 April 

to 00Z 24 April 2019. Indicated is also the area 

average rainfall for the KwaZulu-Natal Province 

 

The corresponding forecasts made by the members of 

the MMENS are shown in Fig. 3. Due to the lower 

native horizontal resolution grids of the global NWP 

models contributing to the MMENS, the predicted 

rainfall areas are generally larger and the rainfall 

patterns less defined. It is also evident that more 

MMENS members are predicting larger areas of 

rainfall greater than 150 mm, than the members of the 

CSEPS. 

  

 
Figure 3: The 12 members of the MMENS: total 

rainfall (mm) predicted for the 48-hour period of 00Z 

22 April to 00Z 24 April 2019. Indicated is also the 

area average rainfall for the KwaZulu-Natal Province 
 

The ensemble average of both systems was calculated 

and compared to the regional, high-resolution 

deterministic SA4 forecast (Fig. 4). The CSEPS 

average indicates the more distinct, concentrated 

region of significant rainfall over the southern KZN 

coast. The SA4 forecast is one of the members of the 

MMENS, but it is seen in the MMENS average rainfall 

that the other members of the ensemble lessen the 

intense rainfall predicted by SA4 along the KZN coast. 

Fig. 5, in turn, indicates the actual, gridded 

interpolated rainfall observed by the automatic rainfall 

and weather stations (ARS) over the KZN Province. It 



46 
 

is seen that the high rainfall event was concentrated 

over the southern parts of the coast. 

 

The observations show that the highest amount of 

rainfall was concentrated from Durban southwards. As 

much as 163 mm was observed at Amanzimtoti during 

the 24 hours of 06Z 22 April to 06Z 23 April. 

Figure 4: Ensemble averages for the CSEP and MMENS forecasts, including the single high-resolution forecast of 

UM SA4 

 

Figure 5: Gridded daily rainfall totals from the 

automatic rainfall stations in the KwaZulu-Natal 

Province, with observations from 06Z-06Z on 23 April 

and 06Z-06Z on 24 April 2019 
 

Conclusion 

When comparing the average rainfall of the two 

ensemble systems, both forecasts have strength and 

weaknesses. The CSEPS indicates more localised and 

concentrated regions of heavy rain as was observed, 

whereas the MMENS predicted the higher rainfall 

totals but over a much larger area. However, both 

ensemble systems performed better than the single 

deterministic forecast. Since the ensemble of forecasts 

forms typically a good representation of the most 

likely expected weather, these ensemble systems may 

be used to provide reliable probabilistic forecasts of 

such weather. 
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This research study evaluated drought characteristics in Port Elizabeth (PE) and Makhanda regions of the Eastern 

Cape Province from 1968 to 2018, based on the computation of the Standardized Precipitation Index (SPI) at 6 and 

12 months accumulation periods. Results indicate that drought conditions are persisting in these regions. Both PE and 

Makhanda exhibit negative SPI trends, suggesting that the SPI values are becoming more negative, leading to 

persistent dry conditions. Mild to moderate drought conditions dominated over the 50 years of the study period. In 

addition, drought severity has increased over the years. The severity was less in 1983 and reached its maximum in 

1995. The results reported in this study is supported by significant decrease of water levels in some of the major dams 

supplying water to the two regions. Appropriate water use planning and other saving measures are therefore required 

to alleviate further water supply crises and for future management and planning of water resources in the region.  

 

Keywords: Rainfall trend, Standardized Precipitation Index, Drought 

 

Introduction 

South Africa has been experiencing recurrent drought 

(Botai et al., 2018) that are impacting various sectors 

of the country’s economy, e.g. water and agriculture, 

among others. For instance, water supply has been 

disrupted in various areas of the country, including the 

Western Cape, Limpopo, Mpumalanga, and the 

Eastern Cape provinces. Water crisis in the Eastern 

Cape Province, particularly in Port Elizabeth (PE) and 

Makhanda, has reached the worst level in its history. 

The water levels in most of the reservoirs have 

drastically dropped, leaving the government with an 

uncertain future, and the possibility of “day zero”.  

 

Drought is one of the factors contributing to water 

supply shortages in the Eastern Cape Province. This 

natural phenomenon is attributed to various factors, 

including insufficient or delay in rainfall coupled with 

climatic conditions such as warm temperature and 

increase evapotranspiration. Research studies have 

projected a shift as well as a decrease in rainfall across 

different parts of South Africa, including the western 

areas of the country (Cook et al., 2014). Such changes 

are likely to exacerbate the occurrence of drought 

events in those affected regions. For effective 

management and planning of water resources, there is 

a need to monitor drought, particular in the most 

affected areas like the Eastern Cape, where the drought 

impacts are already evinced in water reservoirs. The 

aim of this research study is to evaluate spatial and 

temporal characteristics of drought based on the 

Standardized Precipitation Index (SPI), focusing 

mainly on PE and Makhanda regions of the Eastern 

Cape Province. In particular, the study aims to analyse 

the historical patterns of drought in the selected region 

from 1968 – 2018. Such information may contribute 

towards the development and implementation of 

drought monitoring tools or early warning systems.   

 

Study area 

The Eastern Cape is one of the nine provinces of South 

Africa and it is situated along the south coast of the 

country. The climate of the province varies adversely, 

e.g. the northern areas are characterized by semi-arid 

conditions, whereas climate towards the south slightly 

differ, where an ample supply of water is provided by 

the rivers trickling down from mountains. Generally, 

the northern areas of the Eastern Cape exhibit hotter 

and colder nights while the southern areas experience 

a higher rainfall. The eastern coast along the study area 

experience all year rainfall (Engelbrecht et al 2014). 

The selected areas for the study are the PE and 

Makhanda region, see Fig. 1, for their locations in the 

map.  

Figure 1: Map of the Eastern Cape Province with the 

distribution of the selected district stations 



48 
 

Data and methodology 

The data used in this study is the monthly rainfall totals 

from South African Weather Service (SAWS) rainfall 

district stations. The analysed monthly totals spanned 

from 1968 to 2018 (50 years). In total, 4 district 

stations were considered, whereby two stations are 

located in PE (dis12 and dis21) and the other two 

(dis13 and dis22) are in Makhanda.  

 

Characteristics of the rainfall measurements across the 

four district stations were based on computation of 

basic statistical parameters, e.g. the mean, standard 

deviation, coefficient of variation, kurtosis and 

skewness. Trends in rainfall were analysed and 

detected based on the non-parametric Mann-Kendall 

(MK) test (Mann, 1945; Kendall, 1975). The derived 

trends were tested with a statistical significance level 

of p = 0.05. 

 

Drought analysis was based on the calculation of the 

Standardized Precipitation Index (SPI) series. The 

computation of SPI time series across the stations was 

based on the SPI method proposed by McKee (1993). 

In general, the SPI was computed by fitting a gamma 

distribution function to the monthly rainfall time 

series, accumulated to 6 and 12 months, from January 

of each year, and estimate the parameters of the 

distribution. These parameters are used to calculate the 

cumulative probability function of rainfall at 6 and 12 

months accumulated periods. The resulting 

accumulative probability is then transformed into a 

standardized normal distribution, with mean and 

standard deviation of zero and 1, respectively 

(Edwards and McKee, 1997). The output is a SPI time 

series, consisting of both negative values 

(corresponding to dry conditions) and positive values 

(wet conditions). The computed SPI values were 

analyse to assess drought conditions in the selected 

regions of the Eastern Cape Province.  

 

The 6 and 12 months accumulation periods were 

selected because they correspond to agricultural (or 

mid-term trends in precipitation) and hydrological 

(long-term precipitation patterns) impacts of drought, 

respectively. For the purpose of this study, the drought 

characteristics considered are the annual trends, 

general features of the SPI series, drought duration and 

severity in the selected regions. In particular, the 

drought duration and severity were calculated as per 

their definitions in the literature, i.e. the number of 

months with continuously negative SPI corresponding 

to below-average water resources and the accumulated 

negative SPI in a given drought event, respectively 

(Dayal et al. 2018)     

 

Results 

Precipitation characteristics 

Table 1 gives a summary of rainfall time series 

characteristics across the districts. The mean annual 

rainfall range between 27 and 54.  The highest mean is 

recorded in dis12 and dis13 stations, which are located 

in PE and Makhanda, along the coastal area. The 

coefficient of variation is approximately 1 across the 

stations. The distribution of rainfall is extremely 

skewed at an annual time scale, with skewness 

coefficient of greater than 1, across the stations. In 

addition, rainfall time series exhibits thick-tailed 

distribution (e.g. positive coefficient of kurtosis) 

across the stations.  

 

Table 1. Characteristics of monthly rainfall totals 

across the stations 
Station Mean STD CV Kurt. Skew. 

12 41.15 33.23 0.80 4.66 1.90 

13 53.85 43.83 0.81 6.64 1.96 

21 27.32 26.43 0.97 3.30 1.59 

22 38.47 33.25 0.86 4.68 1.66 

 

Trends in precipitation 

Fig. 2 depicts annual trends in rainfall across the 

districts. Based on the results, three of the four districts 

exhibit positive trends. The only station exhibiting 

negative trends is dis22 located in Makhanda region. 

The standardized test statistics across the stations is Z 

= 0.5395. The positive value suggests that, overall, the 

two regions have experienced an increasing trend in 

rainfall. However, the trends across the stations are not 

statistically significant at 0.05 significance level.   

 

Figure 2: Annual precipitation trends across the 

stations 

 

Drought characteristics  

Fig. 3 depicts SPI 6 time series across the 4 stations in 

PE and Makhanda regions. The SPI exhibits seasonal 

and inter-seasonal drought variability pattern. Port 

Elizabeth seem to be experiencing more prolonged 

drought whereas Makhanda experiences highly 

variable drought. Mild to moderate drought 

predominates across the regions. Based on the SPI 6 

time series, drought was still persisting by the end of 

2018.     
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Figure 3. SPI 6 time series for the selected districts in 

Eastern Cape 

 

The SPI 12 time series results are depicted in Fig. 4. 

There exists seasonal and annual drought variation 

across the stations. In some cases drought seem to 

exhibit decadal variation. Mild to moderate drought 

predominates in the regions, although there are few 

cases of severe drought occurrences. The longest 

drought duration occurred in PE between 1983 and 

1988. Based on the SPI 12 time series across the 

stations, drought in PE and Makhanda was still 

persisting by the end of the study period, with no sign 

of recovery.   

Figure 4. Same as Figure 3 but for SPI 12 

 

SPI trend characteristics 

Table 2 summarises results of SPI trends and the 

corresponding significant trends, for both the SPI 6 

and 12 accumulation periods. The observed trend 

pattern is similar in both the accumulation periods. 

Thus, dis12 and dis13 exhibit positive trends whereas 

dis21 and dis23 exhibit negative trends in both the SPI 

6 and 12. The stations exhibiting negative trends are 

found along the coast, but covering both PE and 

Makhanda areas. In addition, trends based on SPI 6 are 

statistically significant in three of the district stations 

while for SPI 12 half of the stations depict statistically 

significant trends and the other half statistically 

insignificant trends. Based on the Z values (Z = -

1.0239 and Z = -1.1546 for SPI 6 and 12, respectively), 

both PE and Makhanda depict a decreasing trend in the 

SPI. This suggests that the SPI values are getting more 

and more negative, hence drought persistence in 

selected regions. 

  

Table 2. SPI trends across the stations 
SPI 6 

Station Trend (Sen’s 

slope) 

p-value 

12 0.0005 0.04 

13 0.0003 0.27 

21 -0.0012 <<0.00 

22 -0.0004 0.07 

Across the stations -1.0239 0.31 

SPI 12 

12 0.0007 0.01 

13 0.0003 0.17 

21 -0.0015 <<0.00 

22 -0.0003 0.17 

Across the stations -1.1546 0.25 

 

The SPI 6 and 12 were used to calculate yearly drought 

severity across the district stations. This gives the sum 

of severities of the drought events occurred in each 

year from 1968 to 2018, expressed in a dimensionless 

drought severity score. The results for drought severity 

are depicted in Figs. 5(A) and (B), for the SPI6 and 12 

respectively. Drought severity varies between 

approximately 0.7 and 11.5 (SPI 6) and 1 and 10 (SPI 

12) across the stations. Drought severity derived from 

SPI 6 depicts an increasing linear trend. In PE drought 

reached maximum severity in 1988, 1992, 1995 and 

2013. On the other hand, drought reached maximum 

severity in 1988, 1992, 1995, 2005 and 2013 in 

Makhanda. The SPI 12 drought severity also depicts a 

clear increasing linear trend. In particular, drought was 

more severe between 1990 and 2005. In PE and 

Makhanda, drought reached maximum severity in 

1994. Between 2005 and 2015 drought was less 

severe. However, based on results, it is possible that 

drought in both regions has again become more severe, 

this is based on the increasing trend observed from 

2016 to 2018.   
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Figure 5. Drought severity across the stations, A: 

corresponds to SPI 6 and B: to SPI 12 

 

Discussion 

Drought is significantly affecting water resources in 

the Eastern Cape Province. Based on the results 

obtained in the current research study, drought in the 

province, particularly in PE and Makhanda areas, 

exhibit seasonal and annual variability. The drought is 

predominantly mild to moderate. The impacts of 

drought in the selected study area are likely to 

exacerbate. This is because the SPI time series seem to 

suggest that drought is still persisting in PE and 

Makhanda regions. In particular the there is a tendency 

of increase in drought severity in those regions. The 

Eastern Cape Provincial government has stated that 

the water shortage particularly in Makhanda has 

stabilised and that the water is now sufficient for the 

community. However, results obtained in this study 

suggest that the water resources are still under 

pressure, due to persistent drought. For instance, the 

dam levels supplying water to PE and Makhanda 

continue to drop in an alarming rate, see the current 

state of dams in Fig 6. As noted in Fig. 6, one of the 

major dams supplying water to PE has dropped to 24% 

and the other in Makhanda to 14% by the end of June 

2019. In addition, persistent drought is likely to affect 

agricultural production, given that most farmers, 

particularly small-scale, rely on rainfed farming. 

Remedial measures (including drilling of boreholes) 

are therefore needed to alleviate future water related 

impacts.  

 

 

 

 

 

 

 

 

Figure 6. Dam levels in (A) Nelson Mandela Bay and 

(B) Makhanda 

  

Conclusion 

This research study evaluated drought characteristics 

in the Eastern Cape Province, focusing mainly on the 

PE and Makhanda regions, from 1968 to 2018. Results 

indicate that the areas have experienced mild to 

moderate drought during the study period. 

Occurrences of drought severity depicted an 

increasing pattern from 1990 to 2004. Drought in PE 

and Makhanda was less severe in 1983 and reached 

maximum severity in 1995. While the SPI 6 depicts a 

decrease in drought severity from 2017, the SPI 12 

suggest that the severity is increasing during the 

period. This is confirmed by the continued water crisis 

in the regions, whereby the dams supplying water are 

continually dropping.  
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Drought indices are often used for drought-risk assessments, monitoring and prediction. The Standardized 
Precipitation Index (SPI) is one of the most commonly used index and is generally calculated by fitting a suitable 
probability distribution function (PDF) to the observed precipitation data. Users often select their own distribution 
function, although in most cases the Gamma distribution has been selected as the default function. The aim of this 
research study is to assess the sensitivity of SPI to the choice of different PDFs. For this purpose, four PDFs, namely, 
the Gamma, Normal, Weibull and Pearson Type 3, were assessed. The results depict minimal differences across the 
PDFs, with the Gamma and Pearson Type 3 distributions almost similar patterns in the SPI time series. Generally, the 
results confirm the utility of using the Gamma distribution when computing SPI for drought monitoring. However, 
due to close correlation between the Gamma and Pearson type 3, the Pearson Type 3 distribution can be used as an 
alternative to compute SPI values for drought monitoring and prediction, without much lost in content.  
 
Keywords: Rainfall trend, Standardized Precipitation Index, Drought. 
 
Introduction 
Drought is considered as a slowly, reoccurring natural 
phenomenon that develops after a lengthy period of 
insufficient or delayed precipitation over a large area 
(McKee et al., 1993). This natural hazard has an 
adverse effect on key socio-economic sectors such as 
water, agriculture, energy, tourism and recreation. 
Drought monitoring and prediction plays an essential 
role for mitigation as well as for effective planning 
measures to alleviate the inherent impacts of drought. 
The Standardized Precipitation Index (SPI) is the most 
commonly used drought index for monitoring and 
prediction of drought (Potop et al., 2012; Chen et al., 
2013; Svensson, 2016). In particular, the SPI is 
recommended by the World Meteorological 
Organization for drought monitoring and has key 
advantages that include spatial consistence, simplicity 
and flexibility as it can be tailored into time scales of 
user’s interest (e.g. 1, 2, 3…, 24 months) (Hong et al., 
2007). 
 
The SPI is computed by fitting a statistical probability 
distribution function (PDF) to the monthly 
precipitation observations. The selected PDF is often 
considered as the most appropriate function that fits 
well to the precipitation time series. The Gamma 
statistical distribution function has in most cases been 
a natural selection choice when computing SPI (Alam 
et al., 2012; Botai et al., 2016; Ghamghmai et al., 
2016; McKee et al., 1993). However, there are other 
research studies that recommend the use of other 
distribution functions, such as the Log-Normal 
(Angelidis et al., 2012), the Generalized Normal 
distribution (Blain et al., 2015), Log-Pearson 
(Gutterman, 1999) and Generalized Logistic 
distribution (Stagge et al., 2015). These studies seem 
to suggest that the selection of PDF plays virtual role 
in the computation of the SPI time series, implying 
that that the selection of PDF has an effect on the 

outcome of the derived SPI. Despite the importance of 
PDF in SPI computation, it is not very clear whether 
the PDF exhibits any spatial dependency 
characteristics.  
 
The SPI is used in South Africa, particularly by the 
South African Weather Service to monitor drought 
conditions in the country. This research study aims to 
assess the sensitivity of SPI to various statistical PDFs 
and identify the most suitable distribution function that 
can be used when computing the SPI series for drought 
monitoring in the Western Cape Province, of South 
Africa. 
 
Study area 
The Western Cape Province (WCP), depicted in Fig. 1 
is located on the south-western part of South Africa. It 
has a surface area of 129,462 km which boarders both 
the Northern Cape and the Eastern Cape provinces in 
the north and east, respectively. Furthermore, the 
province is surrounded by the Atlantic Ocean on the 
west and the Indian Ocean in the south (Census, 2011). 
The Province has the highest rainfall variations 
compared to other provinces of the country, with a 
minimum of 60 mm and a maximum of 3345 mm per 
annum, while most areas receive roughly between 350 
and 1000 mm per annum (Gasson, 1998).    
 

mailto:u15139809@tuks.co.za
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Figure 1: Map of the Western Cape Province with the 
distribution of the selected meteorological stations 
 
Data and methodology 
Daily precipitation data for the years 1985-2018(33 
years) from 11 meteorological weather stations was 
collected from the Department of Water and 
Sanitations website 
http://www.dwa.gov.za/Hydrology/Verified/hymain.a
spx. The selection of meteorological weather stations 
in the Western Cape Province was based on the 
availability of continuous datasets, allowing not more 
than 5% of missing data per station. Seven of the 
stations are located along the west coast which receive 
rainfall in winter, the remaining stations are found 
along the Eastern interior where most of rainfall occur 
in late summer and autumn season.  
 
Characteristics of the annual precipitation data across 
the selected stations were based on the mean, standard 
deviation, coefficient of variation, kurtosis and 
skewness. The non- linear Mann-Kendall statistical 
method was used to test if there was a positive or 
negative trend in the rainfall time series. For details on 
how the MK- test is computed refer to Yue et al., 
(2002). The derived trends were tested with a 
statistical significance level of p = 0.05. 
 
In total, four, different statistical distribution functions 
(e.g. Normal, Weibull, Gamma and Pearson Type 3) 
were used to assess the sensitivity of the SPI series to 
these PDFs. The computation of the SPI time series 
across the stations was based on the methodology 
proposed by McKee (1993). In general, the SPI was 
computed by first fitting each of the four selected 
PDFs to the monthly precipitation series from 11 
meteorological weather stations, all distributed within 
the Western Cape Province, over a 12-month 
accumulation period. Fitting the PDFs resulted in the 
estimation of PDFs’ parameters that describe the 
relation of the distribution functions to the rainfall 
observations. The fitted PDFs were then transformed 
into a normal distribution so that the mean SPI and 
standard deviation are 0 and 1, respectively (McKee, 

1993). The resulting SPI is a set of positive and 
negative values corresponding to wet and dry 
conditions, respectively.  
 
Once the SPI series for each PDF was computed, the 
sensitivity of the computed SPI to each PDF was 
assessed across the stations. This was achieved by 
comparing the SPI series across different PDFs with 
drought features, particularly, the duration and 
severity, derived from the streamflow drought index. 
The streamflow drought index was calculated using 
data from three stream-gauge stations distributed in 
the central and south-eastern part of the Western Cape 
Province. The selection of the best suitable PDF was 
based on the ability of the SPI to detect and reflect 
similar drought conditions as those observed from the 
streamflow drought analysis.  
 
Results 
Precipitation characteristics 
Table 1 summarizes characteristics of rainfall data 
across the stations. The mean varies across the 
stations, ranging between approximately 1 to 5 
mm/day. The standard deviation is high (16 mm/day) 
for G1E006, followed by G2E005 and G2E005 and 
H1E007 with standard deviation of ~13 and ~11 
mm/day, respectively. The coefficient of variation was 
greater than 2 across all stations, with station H4E007 
exhibiting the highest coefficient of variation. The 
distribution of rainfall is extremely skewed, with 
skewness coefficient of greater than 4, across all 
stations. In addition, rainfall time series exhibits thick-
tailed distribution (e.g. positive coefficient of kurtosis) 
across all stations. In particular, station H4E007 
exhibits the highest kurtosis value (169 units), 
suggesting the data might have more outliers.   
 
Table 1. Characteristics of rainfall observations across 
the stations. STD = standard deviation, CV = 
coefficient of variation, Kurt = kurtosis, Skew = 
skewness 

Meteorolog

ical weather 

stations  

Mean 

mm/day 

STD 

mm/day 

CV Kurt 

Units  

Skew 

G1E003 2.59 8.64 3.34 55.5 5.82 

G1E006 4.93 16.2 3.28 80.1 6.41 

G2E003 2.30 6.66 2.90 36.5 4.95 

G2E004 4.23 11.1 2.61 29.8 4.4 

G2E005 4.34 12.7 2.29 33.1 4.68 

G3E003 0.61 2.29 3.81 79.6 7.57 

G4E001 2.58 7.56 2.92 55.6 5.52 

H1E007 2.89 10.9 3.78 162 8.92 

H4E007 0.87 4.33 4.95 169 10.1 

H6E001 1.47 5.54 3.75 120 8.59 

H7E002 2.02 6.85 3.39 120 8.21 

 
Trends in precipitation 
Fig. 2 depicts annual trends in rainfall across the 
stations. Based on the results, all the analysed stations 
exhibit negative trends. The observed negative trends 
suggest that, there’s has been a decrease in rainfall 
over the 33-year period of study.  The trends in four 
stations (indicated in red) are statistically significant at 
0.05 significance level.   

http://www.dwa.gov.za/Hydrology/Verified/hymain.aspx
http://www.dwa.gov.za/Hydrology/Verified/hymain.aspx
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Figure 2: Annual precipitation trends across the 
stations, red indicates stations exhibiting statistically 
significant trends at 95% significant level. 
 
Characteristics of the SPI series 
Fig. 3 depicts the SPI time series for two selected 
stations. The corresponding time series were 
calculated using 12 months’ accumulation period. The 
time series depicts both wet and dry conditions over 
the 33-year study period. Both, set of figures (top 
corresponding to G1E006 and bottom to G2E004 
stations) depict highly variable wet and dry conditions. 
Drought across the stations range from mild (e.g. SPI 
values greater than -1.00 but less than 0) to moderate 
(e.g. SPI values greater than -1.50 but less -1.00), 
although there are few cases where severe drought 
(SPI greater than -2.00 but less than -1.50) is detected. 
Prolonged drought is observed between 2015 and 
2018. 
 

Figure 3. Monthly SPI time series of selected 
meteorological stations showing a detailed trend of 
how drought events processed over the years.  
 
Sensitivity of SPI to PDFs 
The sensitivity of the SPI to different PDFs was 
evaluated by comparing the SPI series for each PDF 
with the drought duration and severity computed from 
streamflow drought index. Results for drought 
characteristics as derived from streamflow drought 
index and utilized for SPI inter-comparisons are 
presented in Table 2. Three major drought duration 
and severity events occurred with G1H008 station, 
whereas the other two stations experience two major 
events per station.   
 
Based on the results for annual average SPI time series 
across the selected stations (see Fig. 4) it is noted that 
the all the selected distribution functions are able to 

detect the drought durations shown in Table 2. The 
Weibull (green) distribution tends to underestimates 
the severity of each event compared to the three other 
distributions. The Gamma (red) and Pearson Type 3 
(blue) tend to show similar characteristics, in terms of 
detecting drought duration as well as the severity of 
each event. In some cases, however, Pearson Type 3 
seem to under-estimate the severity, while, Gamma 
distribution slightly over-estimate the severity, 
particularly, the events that occurred between 2015-
2017 years for stations G2E004.  
 
Table 2. Streamflow drought characteristics. 
DD=drought duration DS=drought severity. 

Stream-gauge 

stations 

No of 

events 
Start End DD DS 

G1H008 

1 
2004-

11-04 

2005-

05-29 
187 4 

2 
2015-

04-03 

2016-

03-26 
358 98 

3 
2016-

10-29 

2018-

04-18 
518 115 

G1H003 

1 
1994-

11-01 

1995-

06-08 
219 4 

2 
2017-

01-11 

2018-

04-22 
438 28 

H1H006 

1 
2015-

08-11 

2015-

12-25 
136 126 

2 
2017-

06-18 

2017-

10-14 
118 118 

Figure 4. Annual average SPI time series for selected 
meteorological stations (G2E004, G3E003, G1E006).  
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Conclusion 
The SPI was computed using the default Gamma 
distribution and alternative distribution functions 
(Normal, Weibull, and Pearson Type 3) to monthly 
precipitation data of 33 years, from 11 meteorological 
weather stations. In general, the results depict minimal 
differences between the four selected PDFs. Major 
drought duration that occurred between 2016 and 2017 
(see Table 2, station G1H008) are clearly detected, 
particularly, by Gamma and Pearson Type 3 
distributions, although there are small differences in 
the estimation of the drought severity. This study has 
confirmed the significance of using Gamma 
distribution for the computation of the SPI for drought 
monitoring, as suggested in the literature. However, 
based on the results, Pearson Type 3 can also be used 
as an alternative distribution function for the same 
purpose, without much lost in information content.  
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Interactions between weather, fuels and humans spur wildfires which has many negative impacts. Research indicates 
increased numbers of wildfire days in South Africa due to global warming, but effects on wildfire regimes is unknown. 
This study investigates this using the conformal-cubic atmospheric model simulations constrained with a 
Representative Concentration Pathway (RCP) trajectory. The study explores projected changes of wildfire regimes 
under a low mitigation scenario and 1.5°C, 2.0°C and 3.0°C global temperature goals using the Canadian Forest Fire 
Danger Rating System. Results suggest that the size and severity of wildfires may increase with potential changes in 
positioning of risk areas. 
 
Keywords: Wildfire regimes, fire season, representative concentration pathway, South Africa, CCAM 
 
Introduction 
Wildfires are global phenomena that result in 
destruction of agriculture and habitats, pollution and 
loss of life. This occurrence is a product of the 
interactions between weather, fuels and humans (De 
Groot et al., 2009). Research has indicated that fire 
weather seasons have lengthened, frequency has 
increased, and more burnable areas are affected 
(Bowman et al., 2015). It is however difficult to 
determine future trends due to complex and nonlinear 
interactions between the weather, vegetation and 
humans (De Groot et al., 2009). Fire danger indices are 
developed based on weather variables that influence 
ignitability, spread rate and controllability of 
wildfires. A Fire Weather Index can predict the 
seriousness of the fire conditions and the threat it may 
pose if not controlled. 
 
Wildfires severely affect the biodiversity of an area as 
it causes the loss of forestry and plant life (Das et al., 
2010). Changes in wildfire regimes may also affect the 
distribution of agriculture and housing as wildfire is a 
direct threat to human life and livestock. A fire 
management system is set in place by the government 
to control fires using fire suppression measures, to set 
and implement evacuation plans and to plan prescribed 
burning events (South Africa, 2013). Researching the 
number of occurrences of natural wildfires, fire season 
length and the affected areas aids in understanding the 
change of wildfire regimes due to climate change. Due 
to the drier conditions, wildfire events occur more 
frequently and effect a larger area in some parts of the 
world (Henley et al., 2015, Engelbrecht et al., 2015). 
In southern Africa it is projected that high fire days 
will increase with the increase in temperatures, but the 
effects on wildfire season length, intensity and the 
affected areas is unclear (Engelbrecht et al., 2015).  
 
In 2015 the Paris Agreement was formed that aims to 
keep the increase in global temperatures under 2°C 
above pre-industrial levels as well as to further limit 
this temperature increase to 1.5°C (United Nations, 
2019). The Intergovernmental Panel on Climate 
Change (IPCC) Fifth Assessment Report (AR5) 

developed models to simulate climate under future 
emission scenarios. These Representative 
Concentration Pathways (RCPs) are used to simulate 
what climate extremes may look like (Canadell et al., 
2016). The RCPs represent greenhouse gas (notably 
CO2) concentration futures, which are all considered 
possible trajectories depending on the concentration of 
greenhouse gases that are emitted to the atmosphere. 
The model is forced with RCP8.5 to assess the impact 
of climate change on wildfire regimes.  
 
This attempt to link climate change to wildfire changes 
is crucial for the understanding of the effect of climate 
change. Looking closely at the change in weather 
conditions that now prevail when wildfires occur, it 
might be possible to identify a trend. For this research 
data from 1960 to 2099, in accordance with the RCP 
simulated scenario time, is used over the domain of 
South Africa. The hypothesis for this study is “there is 
a change in wildfire activity due to climate change”. 
The study thus tests the hypothesis under low 
mitigation and different global temperature goals 
using Daily Severity Ratings and Fire Weather Indices 
with the ultimate objective of assessing the extent and 
scale of future projected wildfire risks.  
 
Data and Methodology 
This research project was conducted over the domain 
of South Africa which lies between 20°S to 36°S and 
15°E to 35°E. High resolution model simulations for 
the present day and future projections incorporating 
climate change parameters was analysed along with 
variables such as temperature, humidity, precipitation 
and wind speed. The simulations for the period of 1960 
to 2099 was used. 
 
Model description 
The regional climate model used is the conformal-
cubic atmospheric model (CCAM; McGregor & Dix, 
2008). The CCAM is a variable resolution global 
climate model (GCM). The model is developed by the 
Common-wealth Scientific and Industrial Research 
Organization (CSIRO) (Thatcher & McGregor, 2009). 
CCAM runs coupled to the dynamic land-surface 
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model CSIRO Atmosphere Biosphere Land Exchange 
(CABLE) (Kowalczyk et al., 1994). 
 
Model simulations and observation data 
Six sets of GCM simulations of CMIP5 and AR5 of 
the IPCC were downscaled to 50 km resolutions 
globally. The simulations span the period 1960-2099 
(Archer et al., 2018). The CCAM downscales the 
Australian Community Climate and Earth System 
Simulator (ACCESS1-0); Geophysical Fluid 
Dynamics Laboratory Coupled Model (GFDL-CM3); 
National Centre for Meteorological Research Coupled 
Global Climate Model version 5 (CNRM-CM5); Max 
Planck Institute Coupled Earth System Model (MPI-
ESM-LR); Norwegian Earth System Model 
(NorESM1-M) and Community Climate System 
Model (CCSM4). 
 
The model simulations were conducted at the Centre 
for High Performance Computing (CHPC) at the 
Meraka Institute at the Council for Scientific and 
Industrial Research (CSIR) (Archer et al., 2018). Bias-
corrected monthly sea-surface temperatures and sea-
ice concentration forcings are used for each 
simulation. Carbon dioxide, ozone and sulphate 
forcing was implemented in line with the RCP 
scenarios. The bias is computed by subtracting for 
each month the Reynolds et al. (2002) SST 
climatology (for 1961-2000) from the corresponding 
CGCM climatology (Muthige et al., 2018). 
 
The project makes use of observational data compiled 
from various sources to assess how the model baseline 
simulations represent observed features of wildfires. 
Data sources include reanalysis data from the National 
Centers for Environmental Prediction (NCEP; 
Kanamitsu et al. 2002) which can also be used as a 
proxy for observations. 
  
Canadian Forest Fire Danger Rating System  
The Canadian Forest Fire Danger Rating System 
(CFFDRS) is a well-known system for predicting and 
assessing wildfire risks globally (Van Wagner 1987). 
It consists of two components: the fire weather index 
(FWI) and the fire behaviours prediction system. This 
study will concentrate on the FWI component. This 
system has often been used to plan fire management 
schemes, to train fire management personnel and to 
research the association between climate change and 
changing fire weather.  
 
Four climate variables which play a key role in 
wildfire potential are: daily maximum temperatures, 
daily relative humidity, total precipitation and mean 
maximum 10m wind speed (Bowman et al., 2015). 
These variables are taken at noon daily and are used as 
input in the CFFDRS package in RStudio to calculate 
the Fine Fuel Moisture Code (FFMC), Duff Moisture 
Code (DMC), Drought Code (DC), Initial Spread 
Index (ISI), Build-up Index (BUI), Fire Weather Index 
(FWI) and Daily Severity Rating (DSR). The FFMC 
expresses the moisture content of fine and dry fuels 
and indicates sustained burning ignition and spread 
rate of fires. DCM expresses moisture content of dead, 

loose organic matters and indicates the relationship 
between probability of ignition by lightning and fuel 
consumption. DC expresses deep, heavy, dry organic 
matter and indicates the relationship between fire 
extinguish potential and heavy fuel consumption. ISI 
is calculated by combining FFMC and wind to express 
the spread rate excluding the impact of fuels. BUI is 
calculated by combining DMC and DC and expresses 
the amount of fuels present used by the fire to spread. 
FWI is calculated by combining ISI and BUI and 
express the fire spreading intensity in energy rate/unit 
length of fire front. DSR is a function of FWI that 
expresses the difficulty to control a fire. The FWI 
indicates growth, intensity and suppression difficulty 
of wildfires. 
 
Fire statistics and ensemble means of DSR were 
created using Climate Data Operators (CDO) for 
seasonal and monthly time scales. The DSR averaged 
over many seasons is described as the Seasonal 
Severity Rating (SSR) and is a better representation of 
fire climate characteristics over many seasons and 
regions. The Seasonal Severity Rating are projected by 
RCP 8.5 for 1.5 ºC, 2 ºC and 3ºC temperature 
threshold. This component is analysed below to show 
characteristics of the fire regime that is projected to 
change. 
 
Results and Discussion 
Wildfire regimes consist of the area affected, the 
season in which the most fire events occur as well as 
the frequency of fire events and its level of danger or 
intensity. The current climate for South Africa defines 
its fire seasons to be in the summer months 
(December, January, February) for the Western Cape 
and in the spring months (September, October) for the 
rest of the country which as these are the driest months 
(Engelbrecht et al., 2015). However, this study looks 
at the winter months (June, July, August) season. 
 
The first figure looks at the DJF season which is 
relevant to the Western Cape fire season. The 3ºC 
temperature threshold is expected to be reached by the 
end of the 21st century if no action is taken towards 
mitigation. The area most effected, as shown in Fig. 1, 
is concentrated to the western part of South Africa as 
well as to the north into Namibia. The DJF season 
wildfire risk is thus projected to be more related to the 
Northern Cape by the simulations. The data also shows 
that the burnable area increases in size with the 
increase in temperature towards the end of the 21st 
century. The size of the burnable area affected for the 
3ºC temperature threshold is much larger than the area 
for 1.5ºC temperature threshold.  
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Figure 1: Seasonal Severity Rating projected by RCP 
8.5 for 3 ºC temperature threshold for the DJF season. 
The figure shows all six simulations as well as the 
ensemble mean.  
 

Figure 2: Seasonal Severity Rating projected by RCP 
8.5 for 3 ºC temperature threshold for the JJA season. 
The figure shows all six simulations as well as the 
ensemble mean.  
 
The second figure looks at the JJA season relating to 
the winter. The area most expected to be affected, as 
shown in Fig. 2, is concentrated to the central and 
western parts of South Africa as well as a great part 
intruding into neighbouring countries. This deviates 
from the current risk classification which is that the 
highest risk occurs over the central and eastern parts 
of South Africa (Forsyth et al., 2010). 
 
The data also shows that, similarly to the DJF season, 
the size of the burnable area increases with the 
increase in temperature towards the end of the 21st 
century. The size of the burnable area affected for the 
3ºC temperature threshold is much larger than the area 
for 1.5ºC temperature threshold. For the JJA season, 
the area affected during the time period when the 2ºC 
temperature threshold is reached is, however, smaller 
than both the areas of the 1.5ºC temperature threshold 
(not shown) and 3ºC temperature threshold. Thus, 
there may be some effect or forcing present when the 
2ºC temperature threshold is reached that reduces the 
number of wild fire events or it could be as a result of 
model deficiency and is to be investigated further. 
 
The DJF season has a lower frequency of fire events 
in comparison to the JJA season in South Africa which 
remains the same for the future projections. In both 
figures it is, however, evident that the intensity for 
both seasons increases towards the end of the 
simulation period. The severity of the JJA season is far 
greater than that of the DJF season. For both seasons 
the severity of wildfire events increases gradually 
from the 1.5ºC temperature threshold to the 3ºC 
temperature threshold. 

 
When comparing the size of the burnable areas 
affected for the two seasons the JJA season poses a 
greater threat than the DJF season in terms of fire 
danger and is projected to be quite larger than the 
current area and the DJF area. Both burnable areas 
increase in risk to the west and northward presumably 
posing a serious problem for areas that previously did 
not expect wildfire events in that season. The north 
western region of South Africa is currently classified 
as a low risk area but projected to be the area with the 
greatest wildfire severity towards the end of the 
century (Forsyth et al., 2010). This makes the western 
part of the country more susceptible to fire events in 
both seasons which influences infrastructure, 
agriculture, safety, wildfire management systems etc. 
for this region. The severity of the wildfire seasons 
may exacerbate problems for South Africa under the 
low mitigation scenario. 
 
Conclusions 
The DJF SSR shows a projected increase in wildfire 
risk over the western parts of the Northern Cape and 
increased intensity. The JJA SSR shows a similar 
projected increase in wildfire risk over the northern 
central parts of South Africa as well as a great increase 
in intensity. The JJA season has both a larger extent 
and stronger severity in comparison to the DJF season. 
Wildfire risk may greatly increase over South Africa 
under the RCP 8.5 scenario and temperature 
thresholds. Wildfire regimes are projected to change 
considerably. 
 
It should be noted that this work is part of an ongoing 
research project and the results presented here are 
based on preliminary analysis. The comparison of 
model historical wildfire simulations against the 
corresponding NCEP, and assessment of projected 
changes in frequency of wildfire dangers are 
underway. 
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Seasonal forecast system development has made significant advances in recent years, including the development of 

models for hydrological, agricultural and health applications utilising forecast output from complex global climate 

models. The skill levels of these models are in some cases (location and season) found to be promising when evaluated 

over an extended period of time – notwithstanding the fact that during some years forecasts may still be wrong even 

for skilful models. In this study, we investigate what the financial implications might be when forecast crop-yields are 

wrong in consecutive years. The paper first introduces a linear statistical dry-land crop-yield model that uses output 

from a coupled ocean-atmosphere climate model as a predictor of crop-yield. The crop model is shown to be skilful, 

but produced poor forecasts for three consecutive years during the test period. We evaluate what the possible cost 

implication might be for a farmer who makes financial investments or takes financial risks in proportion to the crop-

yield forecasts.     

 

Keywords: crop-yield forecasts, coupled ocean-atmosphere model, El Niño and La Niña, accumulated profit  

 

Introduction 

The seasonal forecast community has developed 

complex climate models for operational seasonal 

forecasting in South Africa (Beraki et al., 2014). For 

optimal seasonal forecast production, atmospheric 

models are coupled to similar models for the ocean, 

the land surface and sea ice. Notwithstanding their 

demonstrated accuracies, statistical correction 

methods are recommended even for today’s coupled 

climate model forecasts (Barnston and Tippet, 2017). 

The use of such multi-tiered forecast systems have 

shown to be more accurate for seasonal rainfall 

forecasts, at least for SADC (Landman et al., 2012). 

Recently, hindcasts (or re-forecasts) over a period 

spanning several decades have been used in the 

development of application models for agriculture in 

southern Africa (Malherbe et al., 2014) and hydrology 

(Muchuru et al., 2014). In some cases, the developed 

application models have been used in an operational 

seasonal forecasting environment (see the archived 

forecasts produced by the University of Pretoria for 

examples: https://tinyurl.com/ybrb3a72). As is the 

practice with operational seasonal forecasting, these 

forecasts, including applications forecasts, are 

accompanied by some indication of forecast skill 

evaluated over an independent test period. The skill 

estimates represent a general statement on the overall 

skill of the forecast system. In this study, we want to 

develop an application model, and more specifically a 

model for the prediction of dry-land crop-yields at a 

single farm in South Africa. We then determine the 

skill levels of the model, followed by an assessment of 

possible financial implications for the forecast user (in  

 

the agricultural sector) when there is a succession of 

poor or “missed” forecasts produced by the model. 

  

Data and Methodology 

a. Data 

A set of coupled model hindcasts (or re-forecasts) and 

end of season crop-yield data are used in the following 

analysis. The climate model data have been used 

already for a number of predictability studies (e.g. 

Landman et al, 2012) and consists of ensemble mean 

(from 12 members) 850 hPa geopotential height (i.e. 

near-surface atmospheric circulation) as a proxy for 

rainfall hindcasts. This geopotential height field has 

long since been established as a predictor that can 

replace a climate model’s predicted rainfall fields in 

statistical downscaling for southern Africa (Landman 

and Goddard, 2002). The geopotential height 

anomalies are forecast using the ECHAM4.5-MOM3 

coupled model (DeWitt, 2005) for December to 

February (DJF) seasons, with a model initialization 

month of November. Since DJF is often the best 

forecast skill season over the region and the rainfall 

during this season plays a significant role during grain 

filling and tasselling, it was decided to use only 

climate model data for DJF as a predictor of end of 

season dryland crop-yield. Even though additional 

atmospheric variables (e.g. relative or specific 

humidity) might improve forecast skill, we leave aside 

additional variables as our focus is on demonstrating 

the impact of poor forecasts, and geopotential height 

is sufficient for deriving a reasonably skilful model. 

  

mailto:Willem.Landman@up.ac.za
https://tinyurl.com/ybrb3a72
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The crop-yield data have been obtained from a farm 

near Bapsfontein (26°0′0″S 28°26′0″E) in South 

Africa. The period over which the analysis is done is 

the 21 years from 1987/88 to 2007/08. This period 

consists of 7 El Niño, 7 La Niña and 7 ENSO-neutral 

seasons according to the Oceanic Niño Index for cold 

and warm episodes. The crop yields are first detrended 

to remove the linear upward trend often associated 

with crop-yield data. To ensure that the yield data are 

from a normal distribution for optimal statistical 

modelling to be performed, the natural logarithm of 

the yield values are calculated and referred to in the 

following text. The Lilliefors (Wilks, 2011) goodness-

of-fit test shows that the newly derived crop yield 

values are indeed from an unspecified normal 

distribution.  

 

b. Methods 

The IRI’s Climate Predictability Tool (CPT) is used 

for producing crop-yield hindcasts and for 

verification. The predictor set is the ensemble mean 

850 hPa geopotential height field of the coupled 

model, and the predictand the Bapsfontein crop yields. 

The canonical modes of the hindcasts are used in a 

multiple linear regression model as predictors. The 

forecast skill level of the statistical crop-yield model 

is first tested using a cross-validation setup with a 5-

year-out window. Then the crop model is used to 

produce retro-active crop-yield forecasts for the two 

periods from 1999 to 2008 and from 2003 to 2008. The 

retro-active forecast process of the CPT creates 

probabilistic forecasts over these periods for three 

equi-probable categories with thresholds defined by 

respectively the 33.3rd (below which is the low yield 

category) and 66.7th (above which is the high yield 

category) tercile values of the climatological record. 

For a comprehensive description of the retro-active 

forecast process, refer to Landman et al. (2012).  

 

We only show Pearson correlation values between 

cross-validated forecast and observed time series in 

order to represent the deterministic skill level of the 

crop model. Two sets of retro-active probabilistic 

forecasts are used to determine the potential economic 

value of the crop forecast system (Hagedorn and 

Smith, 2009). For this purpose we make use of the 

cumulative profit (CP) values generated by the CPT 

software. The CP values evaluate probabilistic 

forecasts by means of quantifying the skill of the 

forecast using an effective daily interest rate. Some 

capital is invested into the first of a series of 

consecutive probabilistic forecasts, say for example 

ZAR1,000. Depending on the outcome of how well the 

forecast performs, a return is obtained on the 

investment. This return is calculated based on ‘fair 

odds’ and assuming that the ZAR1,000 is spread 

across the forecast categories in proportion to the 

forecast probabilities. This means that for the observed 

category (above, below or normal), the farmer is 

returned three times the amount of money invested in 

that category each year. The CP results can be 

interpreted as follows: for the CP value of, say, 20 

found for a specific retro-active forecast year, it means 

that an initial investment of ZAR1,000 in the first year 

would be worth ZAR(1,000x20=)20,000 in the 

specified year. One would subsequently invest all of 

the ZAR20,000 on the next year’s forecast, and so 

forth. See Mason (2018) for a comprehensive 

explanation on the calculation of CP values. 

 

Results 

The cross-validation hindcasts and observed values, 

both normalised here, are presented in Fig 1. On the 

figure El Niño and La Niña years are respectively 

shown as “El” and “La”. Also presented in the figure 

are the differences between the observed and predicted 

crop indices.  

Figure 1. Cross-validation crop-yield hindcasts vs. 

observed values. The time series have been 

normalised. The Pearson correlation values for the 

first 11 years (1988 to 1998) and for all the years are 

presented on the figure, along with their levels of 

statistical significance.    

 

Two features of the cross-validated results are 

immediately apparent. The first is that all the El Niño 

years are associated with below average predicted 

yields, and all the La Niña seasons are associated with 

above average predicted yields. One may thus deduce 

that ENSO phases play a significant part in this crop 

model’s yield predictions for the Bapsfontein farm. 

Second, although all but one (2005) of the El Niño 

years are found to be actual low-yield years, a number 

of La Niña years are also actual low-yield years. For 

example, for the three-year period of 1999 to 2001 the 

observed yields are below average. The reasons for the 

forecast failures during these three seasons may be 

related to the observed rainfall outcomes during those 
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summers: the 1998/99 and 2000/01 seasons were not 

wet La Niña years over parts of SADC leading to low 

levels of soil moisture, and during 1999/00 the larger 

part of the region was flooded and possible damages 

to crops occurred.  

 

The deterministic skill level of the cop-yield model is 

typical for southern Africa (c.f. Landman et al., 2012). 

Moreover, the correlation between forecasts and 

observed for the first half of the test period is very high 

(correlation > 0.8), suggesting that future forecasts 

may turn out to be skilful. However, the yield forecasts 

associated with the three La Niña seasons of 1998/99 

to 2000/01 turned out to be poor. The question we 

want to answer in this study is whether or not these 

poor yield forecasts could have had a detrimental 

effect on the finances of a farmer basing decisions on 

them – specifically investment decisions, for the sake 

of the example. We address this question by first 

calculating the CP values for the seasons following the 

first 11 years of the data, i.e. from 1999 to 2008 as 

shown in Fig. 2. Negative CP values are found for the 

majority of the years, with positive values found only 

for 2005, 2007 and 2008. In fact, it was only at the end 

of the retro-active period when the farmer obtained 

substantial and positive CP’s. The second retro-active 

period that excludes the poor forecasts associated with 

the three consecutive La Niña seasons present much 

better CP outcomes. In fact, it was primarily only 

during the 2005 season when there is a big difference 

between the forecast and observed anomalies where 

the CP value of this retro-active period is negative. 

Take note how the inclusion of the poor forecasts in 

the CP calculations has significantly delayed financial 

recovery, and how much less of a detrimental effect a 

single poorly forecast season (2005) has on profits 

compared to when consecutive seasons of poor 

forecasts are included. The above is a simple example, 

which can be expanded to include more realistic 

investment and planting strategies e.g. including 

maize prices and input costs. 

 

Summary and Conclusions 

Southern Africa ranks poorly against the majority of 

regions where ENSO has an effect on seasonal-to-

interannual climate variability (Landman et al., 2019). 

Notwithstanding, seasonal forecasts have been found 

skilful over certain areas of the region and in particular 

during certain times of the year (Landman et al., 2012; 

Archer et al., 2019). Moreover, the majority of end-of-

season crop yields over areas which include the 

Bapsfontein farm, are likely to be predictable when 

there is an ENSO event taking place (Landman and 

Beraki, 2012). Here we presented a linear statistical 

crop-yield prediction model that uses output from a 

coupled climate model that is linked with dry-land 

crop-yields at a single farm. The results presented may 

not be representative for all crop farms in the SADC 

region, since not all end-of-season yields may be 

equally influenced by ENSO events.  

Figure 2. Cumulative profits as determined over the 

two retro-active forecast periods. Red: results from the 

retro-active period from 1999 to 2008; Orange: results 

from the retro-active period from 2003 to 2008. 

 

Verification of the hindcasts produced by the crop 

model shows significant levels of skill. In fact, the first 

half of the 21-year deterministic verification period 

shows an unprecedented level of skill (corr > 0.81). 

Notwithstanding, the model performed poorly for 

three consecutive seasons during a series of La Niña 

events. We wanted to find out how such a sequence of 

poor forecasts may have affected the farmer during 

these three and subsequent years. The main 

conclusions that may be derived from this study are 

that the consecutive poor forecasts could have 

devastating consequences for the farmer, and that a 

possible financial recovery may only have happened a 

good number of years after the three poorly predicted 

years. We also show that a single poorly predicted 

season does not necessarily have the same negative 

financial impact. 

 

So what implications does this result hold for seasonal 

forecast model developers, as well as those concerned 

with applying seasonal forecasts? There are several 

immediate implications, including: 

 Even using a skilful seasonal forecast model 

may not immediately translate into tangible 

benefits to the user (or farmer as in this case), 

but may require sustained use of skilful 

forecasts over a period of several years; 

 The yield forecasts and ENSO are 

symmetrical (low yields predicted during El 

Niño; high yields predicted during La Niña), 

but this symmetry is not as evident in the 

observed outcomes since not all La Niña 

seasons produced high yields; 
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 Even the hedging that takes place in CP 

calculations for each year (the capital is 

spread across the three categories according 

to the predicted probabilities) does not 

guarantee positive benefits. However, 

placing all resources on the assumption of 

single category outcome is even riskier. 

It is clear that we may have to shift our priorities 

towards addressing user needs through tailored 

forecasting and the honest conveyance of model 

forecast caveats to users (including communication of 

uncertainty). Focussing our limited resources on 

demonstrating our capabilities as a modelling 

community, to address technical modelling challenges 

such as the production of high-resolution forecasts, 

risks ignoring fundamental limitations in using all 

seasonal forecasts. This is especially concerning in 

light of recent research which demonstrates that high 

resolution seasonal forecasts may hold very little 

benefit (Scaife et al., 2019). There are also some 

potentially relatively easy gains, such as exploring the 

benefit of using other prediction variables (e.g. pre-

season soil moisture, evaporation-related variables 

etc), or combining a wider range of publicly available 

seasonal forecasts.  

We need to be much more honest and transparent 

about our prediction capabilities even with skilful 

models such as the one presented here. Indeed, 

communicating how to use and interpret seasonal 

forecasts, as well as linking them to variables and 

impacts of interest to specific user groups in particular 

locations may hold as much, if not more benefit.  

Importantly, the process of producing responsible 

seasonal forecasts goes beyond producing the forecast 

itself and must not undermine trust between forecast 

producers and users through overblown promises of 

forecast accuracy and skill. To do so is to risk our 

efforts being misunderstood and ultimately ignored. 
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Disseminating climate-related information is an important aspect of managing the negative impacts caused by climate 

change and variability; as well as improving agricultural productivity in South Africa. However, in order for this 

information to be beneficial, it must be accurate, timely, and cost effective. Thus, the Agricultural Research Council 

developed a Newsletter, called Umlindi, which is distributed freely on a monthly basis to a variety of users. Overall, 

the Umlindi Newsletter serves as channel for disseminating useful indicators such as rainfall which provide a measure 

of the qualitative state of drought conditions country-wide.  
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Introduction 

Climate-related disasters, such as drought, floods and 

heat waves, have previously had adverse implications 

on the agricultural sector in South Africa. Various 

efforts have been undertaken by government officials 

and policy developers to reduce the resulting impacts 

of these disasters, however, the lack of data and 

information is an issue that affects a greater extent of 

the decision-making process. Decision-makers are 

mainly concerned about monitoring the agricultural 

season to help the farmers in adverse years and to 

provide timely and informed decisions for proper 

planning.  

 

In light of this, the Agricultural Research Council - 

Soil, Climate and Water (ARC-SCW) developed and 

implemented a Newsletter in 2004, called the Umlindi 

– a Zulu word for “the watchman”. The main aim of 

the Newsletter is to provide information on drought 

conditions, as well as climate advisories to the 

agricultural sector and the country as a whole. This 

Newsletter compiles information obtained from 

scientific research in a simplified manner that decision 

and policy makers as well as the general public can 

understand and use. The Umlindi Newsletter is 

distributed to subscribing individuals on a monthly 

basis and published on the ARC website 

(http://www.arc.agric.za/ARC%20Newsletters). 

 

There are approximately 300 individuals subscribed to 

the Umlindi Newsletter ranging from farmers, 

university lecturers, private organizations such as 

insurance companies, consulting agencies, farmer’s 

associations to Government entities at multiple scales 

(i.e. national, provincial and local). 

 

 

 

Data and Methods 

a. Data Acquisition 

The content of the Umlindi Newsletter includes value-

added products such as rainfall, Standardized 

Precipitation Index derived from agrometeorological 

data as well as Vegetation Conditions, Rainfall, Fire 

Watch, and Surface Water Resources derived from 

remotely-sensed data covering South Africa. The 

remotely-sensed data used to generate the above-

mentioned products derived from remote sensing data 

was obtained from the Coarse Resolution Satellite 

Image Archive and Information System/Database 

(CRID). In addition, the data used to generate the 

Surface Water Resources is derived from the 

GeoTerraImage’s ‘Msanzi Amanzi’ web-information 

service (https://www.water-southafrica.co.za. 

Meanwhile, the rainfall products offered include those 

obtained from combined inputs of 800 + automatic 

weather stations or rainfall recording stations from the 

ARC-SCW, South African Weather Service and 

Kruger National Park weather station networks. 

Thereafter, the maps are generated using  continually 

improved automated scripts in Python scripting 

language and ArcGIS Geographic Information System 

developed by ESRI 

https://www.arcgis.com/features/index.html. 

 

b. Rainfall mapping  

Rainfall GIS surfaces covering South Africa 

(Malherbe et al, 2016) are produced from data within 

the ARC-SCW Climate Databank as well as the 

external sources mentioned above. The databank holds 

historical data from the South African Weather 

Service and the ARC-SCW. Monthly rainfall GIS 

surfaces covering the period 2009-2013 are produced 

from the historical rainfall data. The rainfall indices 

calculated to produce rainfall products for the month 

in consideration, include total rainfall, percentage of 

http://www.arc.agric.za/ARC%20Newsletters
https://www.water-southafrica.co.za/
https://www.arcgis.com/features/index.html
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long-term mean, cumulative total rainfall of the 

preceding 12 months expressed as a percentage of the 

long-term mean, and total rainfall of the preceding 

three months as compared to same period of the 

previous season. Rainfall deciles (Gibbs and Maher, 

1967) are also calculated, and they are used to express 

the ranking of rainfall for a specific period in terms of 

the historical time series.  

 

Drought conditions are monitored using the 

Standardized Precipitation Index (SPI - McKee et al., 

1993), calculated per quaternary catchment. This 

index was developed to monitor the occurrence of 

droughts using only rainfall data. The index quantifies 

precipitation deficits on different time scales and 

therefore also drought severity. With regards to the 

Newsletter, the SPI is calculated for different time 

scale namely 1-, 3-, 6-, 9-, 12-, 24-, 36- and 40-month 

period based on a program 

(http://drought.unl.edu/archive/climdiv_spi/spi/progr

am/spi_sl_6.exe) developed by the National Drought 

Mitigation Centre. 

 

c. Vegetation Mapping  

An archive of various vegetation monitoring products 

derived from satellite data is updated operationally at 

the ARC-SCW through the Coarse Resolution 

Imagery Database (CRID). The vegetation monitoring 

products are all derived from the Normalized 

Difference Vegetation Index (NDVI) which was 

developed by Rouse et al (1974). NDVI images 

describe the vegetation activity represented by values 

ranging between 0 and 1. The Normalized Difference 

Vegetation Index (NDVI) utilizes differential 

absorption and reflectance in the Red and Near-

Infrared bands of the electromagnetic spectrum, linked 

to vegetation activity. It is computed from the 

following equation: 

 

NDVI=(IR-R)/(IR+R)  Equation (1) 

 

where:  

IR = Infrared reflectance &  

R = Red reflectance  

 

The Standardized Difference Vegetation Index 

(SDVI) is the standardized anomaly (according to the 

specific time of the year) of the NDVI. 

  

The Vegetation Condition Index (VCI) developed by 

Kogan (1990), is represented as a percent value and 

provides a measure to determine drought conditions. 

A VCI of 50% reflects normal conditions while those 

below 50% reflects drought conditions and higher 

values reflects optimal conditions for vegetation. It is 

computed as follows:  

 

VCI=100*(NDVI–NDVIMIN)/(NDVIMax – NDVIMIN) 

    Equation (2) 

where:  

NDVIMIN = minimum pixel value for a given period   

NDVIMax = maximum pixel value for a given period   

 

d. Fire detection  

Remote sensing-based detection of active fire relies on 

detecting the thermal signature of fires using a 

contextual algorithm (Giglio et al., 2003). Actively 

burning fires can be identified and located by detecting 

the elevated energy released relative to their non-

burning surroundings at middle-infrared to thermal 

wavelengths (i.e. 3.6 μm - 12 μm), which depends on 

the combustion temperature even when the fire covers 

small fractions of the pixel (Lentile et al., 2006). The 

8-day MODIS active fire product distributed by the 

Land Processes Distributed Active Archive Center 

(LP DAAC), located at the U.S. Geological Survey's 

EROS Data Center, is used to derive active fires. The 

images are downloaded in a HDF file format where the 

point represents the center of the MODIS pixel, being 

1 km at nadir (Giglio, 2010), which are then converted 

to GeoTIFF using the Modis conversion tool. The 8 

day images are used to build up the monthly datasets. 

The number of fire pixels observed in each 8-day Terra 

MODIS images are then averaged to generate a 

monthly fire image and ultimately the yearly fire 

image (figure 4) using a Geographic Information 

Systems software. Statistics such as the sum of all 

pixels with active fire activity in the satellite overpass 

are also extracted. 

 

Results and Discussion 

Figure 1: Total rainfall during April 2019 over South 

Africa 

Various types of maps are produced to describe 

drought conditions the 10 day or month in 

consideration .The rainfall map (Figure 1) can easily 

be interpreted as the different values are represented 

by different colours in terms of the corresponding 

millimeters (mm) and percentages (%).  

http://drought.unl.edu/archive/climdiv_spi/spi/program/spi_sl_6.exe
http://drought.unl.edu/archive/climdiv_spi/spi/program/spi_sl_6.exe
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On the rainfall deciles maps shown by Figure 2, a 

value of 1 refers to the rainfall being as low or lower 

than experienced in the driest 10% of a particular 

month historically (even possibly the lowest on 

record for some areas). A value of 10 represents 

rainfall as high as the value recorded only in the 

wettest 10% of the same period in the past (or even 

the highest on record). It therefore adds a measure of 

significance to the rainfall deviation. 

Figure 2: Rainfall decile during August 2019 over 

South Africa 

 

Figure 3: 3-month SPI during December 2015 over 

South Africa. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: 3-month PASG for January-March 2016 

over South Africa. 

 

The Standardized Precipitation Index provides an 

indication of rainfall conditions per quaternary 

catchment based on the historical distribution of 

rainfall. Figure 3 shows the drought that occurred 

during the 2015/16 summer. The map (Figure 3) show 

severe to extreme drought conditions that occurred at 

the 3-month time scale by December 2015, in which 

agricultural productivity over most part of the country 

was affected. 

  

The Normalized Difference Vegetation Index (NDVI) 

values are incorporated in the legend of the difference 

maps, ranging from -1 (lower vegetation activity) to 1 

(higher vegetation activity) with 0 indicating 

normal/the same vegetation activity or no significant 

difference between the images. A dekadal NDVI 

image shows the highest possible “greenness” values 

that have been measured during a 10-day period. 

Vegetated areas will generally yield high values 

because of their relatively high near infrared 

reflectance and low visible reflectance. For better 

interpretation and understanding cumulative 

vegetation activity anomalies  over extended time, a 

Percentage of Average Seasonal Greenness (PASG – 

Figure 4) is created where the cumulative vegetation 

activity, as represented by the cumulative NDVI of the 

current period, is expresseed as a percentage of the 

long-term aveage for the same period.  Figure 4 shows 

the vegetation activity in response to the drought that 

occurred during the 2015/16 summer. At this period, 

vegetation activity was extremely poor over much of 

the North West, Free State and Limpopo. Finally, a 

temporal image difference approach for change 

detection is also used. NDVI images of the year under 

observation (e.g. 2019) is compared to the long-term 

average (2000 - 2018) in order to indicate how 

vegetation has changed over the given time. The 

NDVI difference map is depicted in Figure 5. The 
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resulting difference map (Figure 5) shows poor 

vegetation conditions for central parts of the country. 

Figure 5: NDVI difference map for 2016 over South 

Africa 
 

Figure 6 shows the location of active fires detected 

over a 3-month period, compared to other severe fire 

activities since 2000. The resulting map shows that fire 

activity was higher in Easter Cape, Western Cape and 

KwaZulu-Natal  

Figure 6: Active fires detected between 1 January - 30 

June 2016 per province in South Africa. 

 

Figure 7: The total number of active fires detected 

between 1 January - 30 June  2016 per province in 

South Africa. 
 

Conclusions  

The Umlindi Newsletter developed by the ARC 

provides climate-related monitoring products obtained 

from an integration of remote sensing and in-situ data 

from weather stations. The remotely-sensed products, 

viz. vegetation conditions (NDVI) are used to 

complement the purely meteorological products 

(Rainfall), and other products, such as the occurrence 

of bush fires. The Newsletter is distributed to a variety 

of users on a monthly basis, through subscriptions as 

well as on the ARC website. The newsletter makes 

sound scientific information available to Policy-

makers and decision-makers to respond to drought and 

other disasters.   
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7. IMPACTS OF CLIMATE VARIABILITY AND CHANGE 

 

Influence of climate on the spatiotemporal distribution of malaria at Thulamela municipality, Limpopo 
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Malaria, though curable continues to be a major health and socioeconomic challenge. Malaria cases have been on the 

rise for the last two years in the malaria-endemic region of South Africa. Thulamela municipality in Limpopo, South 

Africa falls within several municipalities at Vhembe district which is affected by malaria. It had 33 448 malaria cases 

over a period of 20 years (1998 January-2018 December). This study aims to determine the influence of climate on 

the spatiotemporal distribution of malaria cases for two decades (1998 January-2018 December). The Ordinary Least 

Squares (OLS) regression, exploratory regression, spatial autocorrelation, spearman’s correlation and graphical 

plotting were performed to analyse the distribution of malaria and the relationship between malaria cases and climate 

variables. In addition, environmental variables were taken into consideration. The study found that malaria cases have 

a positive linear relationship with climate variables. The results further suggest that the climate variables were not 

strongly significant to the distribution of malaria with rainfall, maximum and minimum temperatures only able to 

account for 49%, 39% and 56% of the variations of malaria cases respectively in the villages of Thulamela. It was 

found that malaria distribution is also influenced by other local environmental variables (river, cultivated land and 

altitude). The identification of the drivers of the spatiotemporal distribution of malaria is essential for adequate malaria 

control. Such knowledge can aid in the development of a predicting system. This could inform possible earlier 

mitigation plan to stop malaria effects on the communities of Thulamela municipality.  

 

Keywords: Malaria, Thulamela municipality, Epidemiology, Ordinary Least squares, Exploratory regression, 

Geostatistics. 

 

Introduction 

Malaria is regarded as a life-threating disease in the 

world with approximately 3.4 billion people recorded 

to be vulnerable to the disease in 2012 (Xia, et al., 

2015). Approximately 207 million malaria cases were 

recorded with an estimated 627000 deaths globally. 

Malaria epidemiology in South Africa has been well 

researched (Adeola, et al., 2016). The objectives of 

this study were to determine the distribution, intensity, 

seasonality and environmental drivers of the spatial 

and temporal distribution of malaria. 

  

Records have shown that Mpumalanga, Limpopo and 

Kwazulu-Natal provinces, and districts of Zimbabwe 

and Mozambique were mostly affected by malaria 

(Ikeda, et al., 2017). However, Limpopo districts were 

highly affected than other provinces (Maharaj, et al., 

2013; Behera, et al., 2018). In Limpopo, between the 

year 1998 and 2007, a total of 58 768 malaria cases 

were reported with 628 deaths (Gerritsen, et al., 2008). 

High malaria outbreaks occur during warm and rainy 

seasons between September and February (Behera, et 

al., 2018).  

 

Studies have shown that climatic, environmental, 

biological factors and drug resistance contributed to 

malaria transmission. Climatic factors such as 

temperature, rainfall, and relative humidity are mostly 

reported in studies to be positively correlated with 

malaria outbreaks (Lingala, 2017; Adeola, et al., 2016; 

Arab, et al., 2014). However, other local 

environmental factors such as rivers, cultivated land 

and altitude play a role in the distribution of malaria. 

Despite the Limpopo Province accounting for the most 

malaria cases in South Africa, more studies have been 

done over Mpumalanga and KwaZulu-Natal. In 

addition, there is no existing study that has 

investigated the driving factors of the spatiotemporal 

distribution of malaria at the village level. As indicated 

in the National Climate Change Adaptation Strategy 

for South Africa (Environmental affairs, 2017), 

effective climate change adaptation and mitigation 

will require information at a very high resolution. 

Therefore, conducting malaria research at local level 

is imperative. More so, despite having good malaria 

control measure in South Africa, the number of 

malaria cases continued to rise between  2012 and 

2014  (Behera, et al., 2018). Hence, understanding the 

influence of climate and environmental factors on the 
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transmission of malaria at a local scale will improve 

the control measures. 

 

Data and methods 

a. Data 

Malaria data 

Daily data of malaria cases at the official geographical 

and administrative boundary of villages in the Vhembe 

district from 1998-2018 was obtained from malaria 

control programme located in Tzaneen, Limpopo. 

Each year has a range of data from January-December. 

The data was exported from the malaria information 

system. Each data report contains both passive and 

active malaria data; the passive data are obtained from 

patients who tested positive of the plasmodium at the 

hospital while the active data are those that were 

collected through screening methods. Cases diagnosed 

via screening methods that were included in the study 

were those from people that lived close to or in the 

same areas with recently confirmed malaria cases. The 

malaria data contained records of facility name, date 

of diagnosis, number of cases, deaths, age, gender, 

infection, and the facility coordinates. 

 

Climate data 

Climate data consists of daily climate variables of 

daily maximum temperature, daily minimum 

temperature, and daily total rainfall amounts from two 

AWS stations in Thohoyandou and Phunda Maria. The 

data was collected from the South African Weather 

Service (SAWS) with a data period from 1998-2018. 

Each year has data ranges from January-December.  

 

Spatial and environmental data 

South African boundaries of local municipalities and 

village boundaries were acquired from the Municipal 

Demarcation Board which was recently updated by 

2016. Land cover data was obtained from the 

Department of Environmental Affairs which was 

recently updated in 2013. Hydrology shapefiles were 

obtained from the Department of Water and Sanitation 

which was recently updated in 2012.  

   

b. Methodology 

The R statistical package was used to present malaria 

data and climate data through graphical methods and 

to find the correlation between malaria cases with each 

climatic factor monthly. The spearman’s correlation 

was used to consider the monotonic relationship 

within the data (Lingala, 2017). The correlation 

coefficient ranges from -1 to 1, which indicates the 

strength of the relationship between the two datasets. 

The closer it is to 1 (or -1), suggest a strong positive 

relationship, otherwise, strong negative relationship 

between two datasets. 

Using ArcGIS software (ArcMap 10.6) and spatial 

analyst tools, two stations with climate variable values 

(maximum temperature, minimum temperature, and 

total rainfall) were interpolated using Inverse Distance 

Weight (IDW) interpolation method to get climate 

values (maximum temperature, minimum temperature 

and total rainfall) for each village at Thulamela 

municipality, Vhembe district (Pimpler, 2017).   

 

Through spatial join in ArcGIS, malaria data and 

climate data were joined with the shapefile (Villages) 

to perform further statistical analysis. The distribution 

maps of malaria from 1998-2018 were evaluated using 

ArcMap (Pimpler, 2017). The Moran's I values for 

malaria distribution was obtained through Geoda 

statistical software. The spatial weight type of distance 

weight was used with distance metric method of 

Euclidean distance of a distance bandwidth of 

0.046202. 

 

The exploratory regression and OLS regression were 

performed to obtain the climatic factors that are 

significant and that describe the distribution of malaria 

at Thulamela municipality of the year with the highest 

malaria cases of a range from January to march and a 

range from September to November (Pimpler, 2017; 

Behera, et al., 2018). If none of the climate factors is 

significant to the distribution of malaria, then other 

local environmental factors (rivers, cultivated land, 

and altitude) will be taken into consideration (Adeola, 

et al., 2016). The OLS regression model and 

exploratory regression model results contain 

probability fields, VLF values, Jarque-Bera statistics 

(JB stats), Jarque-Bera p-value (JB p-value), R-

squared and Adjusted R-Square values to check if the 

model is biased and if it performed well (Pimpler, 

2017). Spatial Autocorrelation Moran’s I for residuals 

is conducted with a spatial weight of inverse distance 

weighting since majority of the villages are not 

connected. 

 

Results and discussion 

Throughout the years from 1998-2018 (20 years), 

there have been 33 448 malaria cases reported at 

Thulamela municipality. The year 2017 had the 

highest number of malaria cases (6 793) (Fig.1a), 

followed by 2000, 2003, 2006, 2015, then 2008 

respectively. Malaria throughout the years was 

relatively randomly distributed with the Moran’s I 

value of less than 0.5 (Tab. 1). Seasonally, as shown 

in Fig.1b, malaria cases occur more frequently in the 

summer season of December to February (DJF) 

including March with peaks in January. Malaria cases 

are low in the winter season of June to August (JJA). 
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Figure 1. Monthly and yearly malaria case 

 
Figure 2. Malaria distribution for 2017. Red means 

high, otherwise low malaria cases. 

 

Figure 2 illustrate that malaria cases were randomly 

distributed.  

 

Table 1. Year malaria cases Moran's I coefficient 
Year Moran’s I coefficient 

1998 0.198919 

1999 0.168539 

2000 0.143164 

2001 0.141894 

2002 0.106928 

2003 0.126237 

2004 0.14066 

2005 0.183876 

2006 0.093537 

2007 0.0861056 

2008 0.0496228 

2009 0.0978582 

2010 0.149647 

2011 0.1921105 

2012 0.132255 

2013 0.162482 

2014 0.143247 

2015 0.0942481 

2016 0.247506 

2017 0.153692 

2018 0.132608 

 

Through R statistics, the linear relationship was 

evaluated using the Spearman correlation. 

Considering malaria cases and climate variables and 

monotonic relationship of both variables (Spearman 

correlation) (Lingala, 2017), monthly malaria cases 

and climate variables have a relatively positive 

correlation. Thus, amplifying the influence of climate 

variables (monthly maximum temperature, minimum 

temperature, and total rainfall) is the rise of malaria 

cases at Thulamela (Fig. 3). The results indicated that 

the minimum temperature has the strongest positive 

correlation than other climate variables (Table 2).  

 

 
Figure 3. Malaria distribution in relation to climate 

variables 

 

Table 2. Spearman correlation analysis of relationship 

between malaria and climatic factors 
 Malaria Rain Tmax Tmin 

Malaria 1.00 0.49 0.39 0.56 

Rain 0.50 1.00 0.41 0.73 

Tmax 0.39 0.41 1.00 0.83 

Tmin 0.56 0.73 0.83 1.00 

 

The spearman correlation cannot show how climate 

variables statistically significantly influence the 

number of malaria cases at Thulamela. Therefore, the 

OLS regression is performed to check whether the 

climate variables are statistically significant 

influencers of malaria case distribution around the area 

(Pimpler, 2017). 

 

Since the year 2017 had the highest number of malaria 

cases than any other year at Thulamela municipality, 

that year was considered for the OLS regression 

model. The regression model was conducted over the 

range of January-march and September-November 

(Behera, et al., 2018). For the January-March period, 

residuals were randomly distributed with Moran’s 

Index of 0.059, z score of 1.452 and a p-value of 0.146 

with a spatial weight of inverse distance weighting. 

Since the residuals are randomly clustered then OLS 

results are thus reliable.  

 

The JB stats implies that the OLS regression is 

reliable.   The climate factors were significant between 

the period of January-March 2017 however; the 

probability values indicate that the level of 

significance is not strong. JB p-value suggests that the 

residuals are far from reaching normality (Table 3).  

Hence, their influence may be jointly explained by 
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other local environmental factors additionally 

influence of the distribution of malaria. Hence, the 

relationship between local environmental factors and 

climate factors jointly influence the distribution of 

malaria (Adeola, et al., 2016). 

 

Table 3. OLS diagnostics 

 
Proba

bility 
VIF JB Stats 

R-

Square 

JB P-

value 

 Malaria Malaria Malaria Malaria Malaria 

Max T 0,80 >7.5 2623,33 0,09 0,000 

MinT 0,80 >7.5 2623,33 0,09 0,000 

Rain 0,80 >7.5 2623,33 0,090 0.000 

 

When performing OLS regression for September-

November 2017, residual distribution was found to be 

clustered with Moran’ s index of 0.069 and z-score of 

1.715 and p-value of 0.086, and OLS regression was 

not deemed as reliable. 

  

Considering environmental factors, terrain, rivers, 

dams and land use types were taken into consideration. 

The result agrees with previous results by previous 

researchers (Adeola, et al., 2016). When villages are 

located at altitudes that are equal or less than 400m 

above MSL, closer than 2km from a water body, and 

cultivated land, malaria cases are relatively high 

(Adeola, et al., 2016). 

 

A buffer of 2 km around rivers was made, and it was 

found that all the villages that have high malaria cases 

were within the river buffer (Fig. 5). The relatively 

high number of malaria cases were located lower or 

equal to 400m altitudes (Fig. 4) and closer to cultivated 

land (Fig.6). This implies local environmental factors 

contributed to the distribution of malaria and that the 

OLS regression model was biased since some of the 

independent variables from environmental factors 

were not imported in the model. 

 

 
Figure 4. Terrain in relation to malaria cases in the 

year 2017 

 
Figure 5. Rivers in relation to malaria cases in the year 

2017 

 
Figure 6. Land use in relation to malaria cases in the 

year 2017 

 

Conclusion 

The study demonstrate that for efficient malaria 

prediction, climate variables alone are not sufficient 

but should be combined in appropriate weight with 

environmental and socioeconomic (although not 

considered in this study) variables. The study showed 

that the pattern of occurrence can be analysed through 

spatial analysis. The OLS regression method helps in 

depicting a significant pattern of malaria. Since 

monthly changes in malaria cases, climate and 

environmental variables are evaluated, predictions of 

malaria for monthly occurrences are predictable and 

early malaria warnings can be issued to the public. 

Mitigation by different agencies of malaria control can 

be plan early before the outbreak and poor 

communities at Thulamela municipality will be saved 

from the effects of the disease early. 
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Rainfall variability in south Africa is reported to be influenced by El Nino Southern Oscillation (ENSO) and its effects 

also affects the Limpopo Province. The study was conducted to identify the relationship between Standardised 

Precipitation Index (SPI) and Sea Surface Temperature (SST) to identify the influence of SST in bringing rainfall 

variability in the Luvuvhu River Catchment Area (LRCA) and determine the probability of extreme rainfall events 

associated with SST. The results indicate that most of the time SST influence could results in high frequency of wet 

conditions. The study recommends the use of seasonal focus before planting and development of proper drainage 

systems and storage of water.  

 

Keywords: ENSO, Sea Surface Temperature, SPI, drought and Floods 

 

Introduction 

Rainfall variability in South Africa is reported to be 

influenced by ENSO and its effects also impact the 

Limpopo Province (Odiyo et al., 2019). The ENSO 

phenomenon is the oscillation between warm phases 

which is referred to as El Niño characterised by 

abnormal warming of surface ocean waters of the 

central and eastern pacific and enhanced convection in 

the atmosphere above; and a cold phase which is 

referred to as La Nina characterised by abnormal 

cooling of the ocean waters and supressed convection 

in the atmosphere above (Ganguli and Reddy, 2013). 

Considering some studies ENSO is identified as the 

main driver of rainfall variability in Southern Africa, 

however ENSO fails to explain seasonal rainfall 

variability(Crétat et al., 2019). The relationship 

between ENSO and rainfall over southern Africa is 

proven to be strong but there are some ambiguities 

which still need to be clarified (Crétat et al., 2019). For 

example, the relationship between ENSO and rainfall 

is not linear which means not every El Niño leads to 

dry conditions, the below average dry conditions 

failed to occur over southern Africa during the strong 

1997/98 El Niño and in contrast the weaker El Niño of 

1991/92 and 2002/2003 were related to severe summer 

droughts (Rapolaki et al., 2019). The study adopted 

the use of SPI to achieve the following objective, (1) 

identify the relationship between SPI and SST to 

identify the influence of SST in bringing rainfall in the 

LRCA. (2) Determine the probability of extreme 

rainfall events associated with SST. 

  

Instrumentation and Methods 
The SPI programme was downloaded from the 

National Drought Mitigation Centre (NMDC) website 

(http://drought.unl.edu/MonitoringTools/Downloadab

leSPIProgram.aspx.) and used to compute SPI values. 

The meteorological data used in this study consist of 

gridded monthly rainfall data and Sea Surface 

Temperature (Nino 3.4) from the Climate Research 

Unit (CRU TS4.01), available online at 

http://www.cru.uea.ac.uk/_mikeh/datasets/global. The 

latitude and longitude grid points covering the LRCA 

for which monthly rainfall data were downloaded.  

 

Identifying the occurrence of extreme dry and wet 

events and the relation with SST. 

The SPI classification that was developed by Mckee 

(1993) was used to identify extreme dry and wet 

events. A drought year was identified when SPI values 

are consistently below -1.0, which shows that rainfall 

was below normal. Positive SPI values above 1.0 

indicate the beginning of a wet period. Rainfall 

anomalies respond to ENSO extreme, the relationship 

between SPI and ENSO index was used to identify the 

influence of SST on rainfall variability.  

 

Determining the probability of the occurrence of 

extreme rainfall events  

After computing the SPI values for three months’ time 

scale in all 15 grid points that cover the LRCA, 

STATISTICA software was used to determine the 

probability of extreme rainfall events. Firstly, the data 

was fitted to determine which distribution best 

represent the data. The kolmogorov Smirnov test was 

selected to analyse the probability of non-exceedance 

for all the data points. 
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Results and Discussion 

Assessing the influence of SST on rainfall variability 

The relationship between SPI and SST (Niño 3.4) 

indicate high positive correlation with a correlation 

coefficient above 0.90 for all the grid points. The 

results are also statistically significant with p < 0.0001. 

The results indicate that rainfall variability in the 

catchment is highly influenced by ENSO, resulting in 

either the El Niño, neutral or La Nina phases. A study 

by Ganguli and Reddy (2013) compared ENSO 

indices at different phases with drought variables and 

the results indicated high correlations and the 

corresponding p-values were less than 0.0001. 

Positive relationship between Sea Surface 

Temperature Anomalies (SSTA) and 12-months SPI 

was observed by (Nguyen et al., 2014). 

   

Identify the probability of occurrence of extreme 

rainfall events 

The results indicate the probability of the occurrence 

of dry and wet conditions in the LRCA. The 

probability of experiencing extremely dry conditions 

which is indicated by SPI values below -2 is indicated 

by 20% probability of non-exceedance. In relation to 

severe to moderately dry conditions, the probability of 

approximately 25% in grind points (A-H) was 

identified which represents data points in the lower to 

middle part of the catchment. Moreover, the grid 

points (I-O) from the middle of the catchment to the 

upper part of the catchment also indicated severe to 

moderate dry conditions with 40% probability of non-

exceedance. The results suggest that there is 

variability in the intensity of dry conditions in the 

catchment, with moderately to severely dry occurring 

mostly in the middle to upper parts of the catchment. 

However, (Odiyo et al., 2015) suggested that high 

rainfall in the catchment occur in the upper most part 

where the Soutpansberg Mountains are found. These 

findings also show that drought could occur in both 

low and high rainfall areas, therefore water 

management strategies are required across the 

catchment. 

 

 

 

 

Conclusions 
The study was aimed at determining the influence of 

SST in cause variability in rainfall in the LRCA. The 

use of SPI and ENSO index showed that indeed 

rainfall variability could have associated with the 

influence of ENSO. Therefore, using weather forecast 

and advisories could help farmers to better prepare 

their planting activities based on the projected weather 

systems identified during the particular season. 

Development of water harvesting and storage methods 

is essential as the frequency of wet conditions is shown 

to be high. However, dissemination of information on 

cultivar selection based on the seasonal rainfall is 

recommended. 
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Water reservoirs such as rivers, lakes and dams are influenced by various factors, including climatic conditions. This 

study sought to investigate the relationship between dam levels, precipitation, evaporation and streamflow in the 

Western Cape Province. Four major dams in the Western Cape Province were considered for the study. A linear 

regression and multivariate analysis were used to assess the relationship between dam levels and the selected driving 

variables, as well the dependence of dams on these climatic variables. Based on the results, the influence of 

precipitation, evaporation and streamflow on the changes of dam levels appear to be localized, with streamflow 

dominating in three of the selected dams. In addition, a multi-linear regression model used to model the influence of 

combined effects of precipitation, streamflow and evaporation suggest that changes in dam levels in Theewaterskloof 

and Voilvlei dams are more attributed to mainly streamflow and combined effects from streamflow and evaporation, 

respectively. This is expected given that streamflow is the main input that feeds the dams. The final model relating to 

variations in Kwaggaskloof Dam reflects a combined effects of precipitation, streamflow and evaporation, and these 

effects account up to 26%. The results, presented in this study assumed that the dam levels are solely affected by the 

three driving hydro-meteorological variables. It is acknowledged, however, that dams are also affected by other factors 

such as water consumption, land-use, and vegetation cover, among others. The inclusion of some of these factors is 

necessary for the purpose of increasing our understanding on the relationship between dam levels and hydro-

meteorological variables, although most of water use data are not easily accessible. 

 

Keywords: Dam levels, precipitation changes, streamflow, evaporation, multivariate analysis 

 

Introduction 

Dams provide numerous socio-economic benefits. For 

instance, dams contribute to socio-economic 

development by supplying water to various 

stakeholders for numerous purposes, such as 

irrigation, flow regulation for flood and drought 

control, navigation, house-hold consumption, 

recreation and hydroelectricity generation (World 

Commission on Dams, 2000). Despite their benefits, 

dams often have negative impacts on the river 

ecosystems. For instance, dams may block upstream 

and downstream fish passage, as well as increasing 

water temperatures (Gore and Petts, 1989; Trout 

Unlimited, 2002). The hydroelectricity generation 

process can result in the loss of fish (Alexander, 2 

1999). Furthermore, dams may lead to a decrease in 

water oxygen levels and obstruct the potential 

movement of nutrients and sediments along streams 

(Kanehl et al., 1997; Bednarek, 2001). 

 

In general, the registered impacts are two-way. Thus, 

while the dams may pose significant impacts on the 

ecosystems, climate change and variability on the 

other hand affects the stability of the dams, including 

the infrastructures as well as water levels. For 

instance, reduced rainfall intensity coupled with 

prolonged dry-spells under climate change may affect 

streamflow, runoff as well as sub-surface flows in the 

catchments, thereby affecting water availability in the 

dams (Immerzeel et al., 2010). In addition, warm 

temperatures are likely to exacerbate evaporation 

processes, (e.g. more water exposed to air and direct 

sunlight), hence increasing evaporation rates and 

reducing natural water flow (Bowen, 1926).  

 

The ability of a dam to supply water for various 

purposes depends on the dam’s water gain and its loss. 

Hydro-meteorological parameters such as 

precipitation, streamflow, temperature, evaporation 

and runoff play a significant role in the amount of 

water gain and losses within a dam. Hence these 

variables play a significant role in water resource 

management and planning, including the 

determination of water availability in most of water 

reservoirs (Van Koppen, 2005). For the purpose of 

effective water resources management and planning, it 

is necessary to assess the extent to which various 

hydro-meteorological variables affect the stability of 

dams, including the changes in water levels. The aim 

of this research study is to assess the influence of 

precipitation, evaporation and streamflow on the 

changes of dam levels in Western Cape Province.  
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Study area and Data 

Four dams distributed across the Western Cape 

Province (WCP) were considered in this study, see 

their distribution in Figure 1. The WCP is the fourth 

largest of the nine provinces of South Africa, located 

on the south-western part of the country, where it 

boarders the Northern Cape and the Eastern Cape 

provinces in the north and east, respectively. The 

selection of four dams was based on Full Storage 

Capacity (FSC) of greater than 30 M and the 

availability of recorded data. These dams are 

Gamkapoort, Kwaggaskloof, and Theewaterskloof 

and Voivlei. Based on the selection criteria, the four 

dams are therefore considered the major dams that 

supply water to the community of the WCP. 

 

The datasets used are the weekly-recorded dam levels, 

and daily rainfall, evaporation and streamflow 

observations, all acquired from the Department of 

Water and Sanitation. Only meteorological and 

stream-gauge stations distributed within/near the dams 

were considered. In particular, the selected stations 

were those located in the upstream of the dams. All the 

datasets were analysed for the period from 2000 – 

2017. 

 

 
Figure 1: Distribution of the selected dams in the 

Western Cape Province. 

 

Methodology 

Table 1 lists the rainfall and stream-gauge stations 

selected for data analysis. Firstly, precipitation, 

evaporation and streamflow time series were analysed 

to assess the spatial and temporal characteristics of 

each variable across the stations. Features were 

described based on the mean, standard deviation, 

coefficient of variation and skewness statistical 

parameters. Trends were not considered due to the 

shorter period considered.   

 

 

 

Table 1. Selected rainfall and stream gauge stations 
Rainfall 

Stations Latitude Longitude 

G1E002 -33.34178 19.04105 

J2E004 -32.35017 22.5745 

H4E007 -33.76 19.47 

H6E001 -34.07591 19.29189 

Streamflow 

G1H008  -33.31388 19.07472 

J2H018  -32.24027 22.58583 

H1H029  -33.68 19.36 

H6H012  -34.09222 19.29416 

 

A linear regression analysis was used to determine the 

relationship between the dam levels and the selected 

hydro-meteorological variables. Simple linear 

regression involves one independent variable and one 

dependent variable and a straight line approximates 

the relationship between the two variables (Lourk, 

2017).  

 

The equation that describes how y is related to x and 

an error term is called the regression model and 

described by Equation 1. 

 

                                     1 

    

In order to determine the strength of the relationship 

and to characterize the extent to which hydro-

meteorological parameters affect changes of water 

levels in the dams, coefficient of determination was 

calculated using the total sum of squares (SST), the 

sum of squares due to regression (SSR) and the sum of 

squares due to error (SSE) (Lourk, 2017) see Equation 

2. 

 

                                                            2  

 

Multivariate linear regression analysis of 

precipitation, evaporation and streamflow and the dam 

levels was used to determine the dependence of the 

dam levels on the selected parameters. Multivariate 

regression considers situations involving two or more 

independent variables (Lourk, 2017). The equation 

that describes how the dependent variable y, for 

instance the dam level in this study, is related to the 

independent variables, which are precipitation, 

evaporation and streamflow, x1, x2, . . . xp and an error 

term is given in Equation 3: 

 

  3 
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Results 

Characteristics of precipitation, evaporation and 

streamflow  

Table 2 gives a summary of precipitation, evaporation 

and streamflow characteristics in terms of the mean, 

the standard deviation (STD), coefficient of variation 

(CV) and skewness (Skew.). The mean is highly 

variable across the stations and variables, with 

minimum of 0.02 mm for evaporation and maximum 

of 5.71 mm for streamflow. The CV is significantly 

high for precipitation and less for both evaporation and 

streamflow. The distribution of all the variables is 

positively skewed across the stations.  

  

Table 2. Statistical characteristics of hydro-

meteorological parameters 
Precipitation 

Station Mean STD CV Skew. 

Gamka. 0.71 3.86 5.43 9.36 

Kwagg. 0.86 4.14 5.07 10.62 

Theew. 0.65 3.53 5.42 10.78 

Voilv. 0.66 3.50 5.32 9.20 

Evaporation 

Gamka. 5.31 3.19 0.60 0.70 

Kwagg. 6.57 12.3 1.87 2.24 

Theew. 0.02 0.03 1.15 33.4 

Voilv. 5.24 3.19 0.56 0.79 

Streamflow 

Gamka. 0.43 0.86 2.00 2.18 

Kwagg. 5.71 3.23 0.56 0.44 

Theew. 5.76 3.11 0.54 0.60 

Voilv. 0.51 0.90 2.30 1.89 

 

The relationship between dam levels and hydro-

meteorological parameters 

Figure 2 depicts results from the simple linear 

regression analysis, which aimed to assess the 

relationship between dam levels and the selected 

hydro-meteorological parameters, e.g. Dam Levels 

(DL) versus Pre (Precipitation); DL vs. Evap 

(Evaporation); and DL vs. SF (Streamflow). Based on 

the results, a change in one variable results in change 

in dam levels, although in some cases such changes are 

significantly small. It can also be noted that 

streamflow changes play a significant role in the 

stability of dam levels, with changes ranging from 9% 

and up to 36% in three of the dams, namely 

Kwaggaskloof, Theewaterskloof and Voilvlei. . 

Precipitation changes contribute about 20% to the 

changes in water levels in Gamkapoort Dam. 

Generally, evaporation changes contribute less across 

all the four dams in the Western Cape.    

 

 
Figure 2: Relationship between dam levels and hydro-

meteorological parameters, described in terms of 

linear regression model (R-Squared (%). 

 

Multivariate linear regression analysis 

Results for multivariate analysis are summarised in 

Table 3. In this analysis, the initial model is assumed 

to be the sum of precipitation, streamflow and 

evaporation, as shown in column 2 of Table 3. The 

final model that describes the main contributing 

parameters to the changes of dam levels is given in the 

third column of Table 3, with the percentage 

contribution given in column four. Based on the results 

it is noted that precipitation and evaporation are the 

main contributing factors to the changes in 

Gamkapoort dam levels, with a percentage 

contribution amounting to 26%. For Kwaggaskloof 

Dam all the three parameters appear to be contributing 

to the changes in water levels, with up to 25% 

contribution. In addition, water levels changes in 

Theewaterskloof Dam are mainly affected   by 

streamflow changes, and this amounts to 12% 

contribution. Lastly, water levels in Voivlei Dam are 

affected by changes in streamflow and evaporation, 

with a combined contributions of 46%.  

 

Table 3: Multivariate analysis results 

Dam Initial model Final model R2 (%) 

Gamka 
dl ~ Pre + EV 

+ SF 
dl ~ Pre + EV 26 

Kwagga 
dl ~ Pre + EV 

+ SF 
dl ~ Pre + EV 

+ SF 
25 

Theewat 
dl ~ Pre + EV 

+ SF 
dl ~ SF 12 

Voilv. 
dl~ Pre + EV 

+ SF 
dl ~ EV + SF 46 

 

Discussion 

The linear regression analysis determined the 

relationship between the dam levels and each of the 

hydro-meteorological parameters (see for example 

Figure 2). Based on the linear regression results, 

streamflow is found to be the main input of water into 

the dams; therefore, the relationship between dams 

and streamflow has an R-squared percentage ranging 

from 9% to a maximum of 36% in three of the selected 
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dams, thus showing a stronger relationship between 

dam levels and streamflow.  

 

The results presented in this study suggest that the 

impacts of precipitation, evaporation and streamflow 

on the changes of dam levels is localized and 

dependent on the climatology within the area. The data 

analysis was carried out with the assumption that 

hydro-meteorological variables are the only factors 

that influence water level fluctuations in the selected 

dams. In reality, dam levels are influenced by many 

other factors such as the area of the dam, land cover, 

vegetation, soil type, water consumption, upstream 

and downstream flows and its velocity, temperature 

etc. Other factor to be considered is the shape of the 

dams, as this can potentially affect the rate of 

evapotranspiration. Nevertheless, the results derived 

from this analysis can serve as a stepping-stone in an 

effort to understand the relationship between dam 

levels, precipitation, streamflow and evaporation, 

based on linear regression analysis. A similar 

approach to linear regression analysis used in this 

study is the use of simple water balance model. 

However, this approach cannot be considered here due 

to lack of water use data, a predicament faced by most 

researchers in hydrometeorology. As a result, this 

study only illustrate the relationship between dam 

levels and three driving hydro-meteorological 

variables.  

 

Conclusion 

Dam levels fluctuations are influenced by the 

climatology within the area. This study assessed the 

relationship between changes in dam levels and three 

driving hydro-meteorological variables, namely, 

precipitation, streamflow and evaporation. Results, 

based on linear regression analysis, indicate that 

streamflow is the main factor that influence the 

changes in water levels in three of the selected dams, 

followed by evaporation. Precipitation seem to 

dominate in Gamkapoort Dam, followed by 

evaporation. The results reported in this study are 

based on the assumption that dam levels are mainly 

affected by the three selected variables, although in 

reality this is not the case. Nevertheless, the research 

can contribute to effective water resources 

management and planning, as the relationship between 

dam levels, precipitation, streamflow and evaporation 

is clearly illustrated. 
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Diffuse fraction (K) is a good indicator of the ratio of diffuse to global irradiance of a place. This study investigates 

characteristics of K at different locations in South Africa. The effect of atmospheric water vapour pressure deficit 

(VPD) on K is also studied. K is highest and lowest at coastal and inland locations respectively. It variable at low 

VPDs less than 1.6 kPa and generally constant for dry atmosphere.  
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Introduction 

Solar irradiance drives the energy balance at the 

earth’s surface, the hydrological cycle and the climate 

system (Stjern et al., 2009; Wild, 2009). Recent 

observations suggest that substantial changes in global 

irradiance occur over time and may profoundly affect 

our environments (Wild, 2009). Solar irradiance 

measurements show a consistent global dimming from 

the 1960s, when reliable data sets became available, 

through to the 1980s (Streets et al., 2009). 

 

Changes in solar energy reaching the surface of the 

earth can be of natural origin, such as those induced by 

a major volcanic eruption on time scales of a few 

years, up to time scales of many millennia due to 

changes in the earth orbital parameters (Wild, 2009). 

On the other hand, anthropogenic activities have 

increased the aerosol content in the atmosphere that 

have affected characteristics of terrestrial solar 

irradiance (Kvalevag and Myhre, 2007; Wild, 2009). 

Aerosols reduce the amount of solar irradiance 

reaching the surface of the earth (Streets et al., 2009).  

 

Extinction of solar irradiance in the atmosphere is 

done by two principal ways. Atmospheric aerosols 

scatter incident solar irradiance in all directions 

through the principles of Mie theory (Wang, 2019). 

Extinction of solar irradiance by gaseous elements is 

described by Rayleigh scattering (Wang et al., 2006). 

Both these scattering processes increase the amount of 

solar irradiance that is either reflected back to space or 

absorbed by the atmospheric constituents but increases 

the downward flux of diffuse radiation at the Earth’s 

surface (Unsworth and Monnteith, 1972). 

Atmospheric constituents that affect transmission of 

direct solar irradiance include ozone absorption, 

molecular scattering, uniformly mixed gas (G) 

absorption, water vapor absorption, aerosol absorption 

and scattering, stratospheric and tropospheric nitrous 

oxide absorption (Allen et al., 2006; Wang et al., 

2006). 

 

Southern Africa is not only a region of abundant 

sunshine, but also a significant source of ozone 

precursors and a dominant anticyclonic circulation 

that suppresses vertical mixing and promote the 

accumulation of pollutants. Aerosols play an 

important role, reducing incoming solar irradiance by 

between 10 and 40% during times of local biomass 

burning and at the industrialized and populated regions 

(Kvalevag and Myhre, 2007). Few studies on trends of 

solar irradiance have been conducted in the southern 

atmosphere (Power and Mills, 2005). The objective of 

this study is to investigate temporal and spatial 

variability of diffuse fraction, K index in South Africa. 

The study also investigated the characteristics of the 

relationship of K and VPD. The variability of this 

index during the morning and afternoon periods will 

be analyzed. The study also establishes the 

relationship of K with water vapour pressure deficit, a 

measure of atmospheric dryness. 

 

Study area, data and methodology 

Data 

Solar irradiance, air temperature and relative humidity 

data from six stations with longest datasets were used 

in this study. The hourly data for the stations 

(Bloemfontein, Cape Town, Durban, Port Elizabeth, 

Pretoria and Upington) representative of climatic 

conditions in the country were obtained from the 

South African Weather Services. Start and end dates 

as well as geographical descriptions of the  data used 

http://saees.ukzn.ac.za/
mailto:tongwanem@arc.agric.za


80 
 

in analysis are provided in Tongwane et al. (2019). 

These data were of sufficient quality for research and 

were monitored using Kipp and Zonen pyranometers 

which were later replaced with Li-Cor pyranometers 

from the 1950s to the 1990s (Power and Mills, 2005). 

Disaggregated data for total (global) solar and diffuse 

recorded at various locations in the country irradiance 

data was not available after the mid-1990s.  

 

Methodology 

Average monthly values of K for mornings and 

afternoons were calculated separately. Hourly data 

from 0600hrs to 1100hrs were considered for morning 

calculations while 1200hrs to 1900hrs were used for 

the afternoons. K was described as a ratio of diffuse 

irradiance to global irradiance.  

 

Hourly atmospheric water vapour pressure deficit 

(VPD) for each station were calculated using Eqn. 1. 

For each interval in VPD of 0.2, the corresponding 

values of K were averaged. These average values of K 

were then plotted against the value of VPD for the 

interval mid-point. 

 

  (1) 

 

where eo and ea are saturation vapour pressure and 

actual vapour pressure respectively; T is the hourly air 

temperature; RH is the hourly relative humidity.  

 

Results and discussion 

Components of solar irradiance received on the 

surface vary significantly between locations. Global 

irradiance is highest at Upington and Cape Town in 

summer, Upington, Pretoria and Bloemfontein in 

winter but diffuse irradiance is highest along the 

coastal locations throughout the year (Table 1, 

Tongwane et al., 2019). K is generally higher in the 

coastal areas where they can reach more than 0.6 at 

both Cape Town and Durban (Fig. 1a). This is caused 

by relatively moist conditions that are predominant in 

the coastal locations. K is highest at Durban in all the 

seasons except winter. This is consistent with the 

results of Power and Mills (2005) who found that 

Durban and Pretoria had the lowest global irradiance 

but highest diffuse irradiance in South Africa. 

However, at the arid Upington, diffuse irradiance is 

less than 40% of global irradiance and it can reach 

rates below 0.2 in winter. The lower K rates at 

Upington show that the sky is much clearer there than 

at any location in the country. Similar to coastal 

locations, K values are also higher at Pretoria.  This is 

because Pretoria is located in the region of the country 

that is heavily polluted by air pollutants that originate 

from industries in Gauteng and Mpumalanga (Tesfaye 

et al., 2011). The high K values on the coastal locations 

and Pretoria reflect the Mie and Rayleigh effects 

respectively (Roman et al., 2013). 

 

The gradient of decrease of K with VPD is steep until 

1.6 kPa after which the rate of change is nearly 

constant at approximately 0.3 (Fig. 1b). The 

relationships of K and VPD after 1.6 kPa are generally 

similar except for all the locations except Cape Town 

during drier atmospheric conditions. This shows that 

composition of solar irradiance changes rapidly at low 

VPDs (i.e. moist atmospheric conditions) than at high 

VPDs which indicate dry conditions. Dry atmospheric 

conditions with daily and hourly VPDs greater than 

1.6 kPa in the eastern interior of South Africa are 

predominant in the afternoons of the spring season 

(Tongwane et al., 2017). Diffuse fraction is gradually 

decreasing with time in most parts of the country (Fig. 

2). Its change varies according to the month of the 

year, time of the day and a location. Cloud data at the 

stations during the observations of the solar irradiance 

were not available to investigate the relationship of K 

with cloudy conditions. 

 

Conclusions 

The amount of diffuse fraction  of solar irradiance 

depends on location. The coastal areas have higher 

fractions than the inland locations. Port Elizabeth and 

Upington have highest and lowest fractions 

respectively. Cape Town with Mediterranean  climate 

has a different diffuse fraction profile. Diffuse fraction 

decrease rapidly for vapour pressure deficits less than 

1.6 kPa but remains nearly constant at 0.3 thereafter. 
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Fig. 1: (a) Temporal and spatial variability of diffuse fraction in South Africa, (b) Variability  of diffuse fraction with 

atmospheric water vapour deficit (BFN – Bloemfontein; CTN – Cape Town; DBN – Durban; PE – Port Elizabeth; 

PTA – Pretoria; UPN – Upington; Average – Average of all stations)  

 

Table 1: Average monthly global and diffuse irradiance at different locations in South Africa 
 Global irradiance  Diffuse irradiance 

Month BFN CTN DBN PE PTA UPN  BFN CTN DBN PE PTA UPN 

1 27.55 29 20.7 25.48 23.87 29.65  7.35 6.59 8.94 8.61 8.58 5.42 

2 24.84 25.9 20.1 22.86 22.47 26.62  6.83 5.90 7.84 7.73 8.20 5.52 

3 21.59 21.4 17.9 18.74 20.17 22.99  5.85 5.00 6.52 6.22 6.83 4.85 
4 17.98 15.2 14.9 14.74 17.70 18.71  4.36 4.37 4.74 4.62 5.12 4.03 

5 15.27 10.6 12.2 11.38 15.71 15.63  3.19 3.66 3.63 3.44 3.51 3.05 

6 13.57 8.69 10.9 9.88 14.32 13.67  2.73 3.17 3.02 2.95 3.09 2.71 
7 14.64 9.64 11.5 10.69 15.14 14.69  2.88 3.36 3.36 3.11 3.24 2.67 

8 17.83 12.60 13.5 13.31 17.82 17.90  3.55 4.39 4.43 4.22 3.97 3.56 

9 21.37 17.10 15.00 16.81 20.80 21.86  5.18 5.79 5.97 6.13 5.24 4.60 
10 24.84 22.70 17.50 21.09 22.59 26.13  6.45 6.85 7.49 7.63 6.81 5.79 

11 27.78 27.60 19.50 24.61 23.47 29.88  6.85 7.26 8.59 8.82 7.98 5.36 

12 29.13 29.30 21.40 26.75 24.69 30.98  7.00 7.19 9.12 8.72 8.50 5.15 

  

 

(a) (b) 
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Fig. 2: Morning and afternoon diffuse fraction at various locations in South Africa between 1957 and 1992 during 

the months July to December 

References 

Allen, R.G., Trezza, R. and Tasumi, M., 2006. 

 Analytical integrated functions for daily 

 solar radiation on slopes. Agricultural and 

 Forest Meteorology, 139(1-2), 55-73. 

Kvalevåg, M.M. and Myhre, G., 2007. Human 

 impact on direct and diffuse solar radiation 

 during the industrial era. Journal of 

 Climate, 20:19, 4874-4883. 

Power, H.C. and Mills, D.M., 2005. Solar radiation 

 climate change over Southern Africa and 

 an assessment of the radiative impact of 

 volcanic eruptions. International journal of 

 climatology, 25:3, 295-318. 



83 
 

Román, R., Antón, M., Valenzuela, A., Gil, J.E., 

 Lyamani, H., De Miguel, A., Olmo, F.J., 

 Bilbao, J. and Alados-Arboledas, L., 2013. 

 Evaluation of the desert dust effects on 

 global, direct and diffuse spectral 

 ultraviolet irradiance. Tellus B: Chemical 

 and Physical Meteorology, 65(1), 19578. 

Stjern, C.W., Kristjánsson, J.E. and Hansen, A.W., 

 2009. Global dimming and global 

 brightening—An analysis of surface 

 radiation and cloud cover data in northern 

 Europe. International Journal of 

 Climatology: A Journal of the Royal 

 Meteorological Society, 29:5, 643-653. 

Streets, D.G., Yan, F., Chin, M., Diehl, T., 

 Mahowald, N., Schultz, M., Wild, M., Wu, 

 Y. and Yu, C., 2009. Anthropogenic and 

 natural contributions to regional trends in 

 aerosol optical depth, 1980–2006. Journal 

 of Geophysical Research: Atmospheres, 

 114(D10). 

Tesfaye, M., Sivakumar, V., Botai, J. and Mengistu 

 Tsidu, G., 2011. Aerosol climatology over 

 South Africa based on 10 years of 

 Multiangle Imaging Spectroradiometer 

 (MISR) data. Journal of Geophysical 

 Research: Atmospheres, 116(D20). 

Tongwane, M.I., Savage, M.J., Tsubo, M. and 

 Moeletsi, M.E., 2017. Seasonal variation of 

 reference evapotranspiration and Priestley-

 Taylor coefficient in the eastern Free State, 

 South Africa. Agricultural water 

 management, 187, 122-130. 

Tongwane, M.I., Savage, M.J. and Tsubo, M., 2019. 

 Relationship between global and diffuse 

 irradiance and their variability in South 

 Africa. Theoretical and Applied 

 Climatology, 137(1-2), 1027-1040. 

Unsworth, M.H. and Monteith, J.L., 1972. Aerosol 

 and solar radiation in Britain. Quarterly 

 Journal of the Royal Meteorological 

 Society, 98(418), 778-797. 

Wang, J., 2019. Angle dependent light scattering of 

 functional nanoparticle composites. 

 Doctoral dissertation. Acta Universitatis 

 Upsaliensis. ISBN 978-91-513-0559-2 

Wild, M., 2009. Global dimming and brightening: A 

 review. Journal of Geophysical Research: 

 Atmospheres, 114(D10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 



84 
 

8. INSTRUMENTS AND DATA COLLECTION 
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This study presents analysis of the variability and trends of the all-day, day-time and night-time ozone data measured 

at Cape Point Global Atmosphere Watch (GAW) station. Long term trends from 2000 to 2018 are investigated. The 

linear trend slope of 0.28 and 0.19 ppb/year are observed for the night-time and day-time data subsets, respectively. 

The observed higher linear slopes at night is evident in all seasons. In addition to linear trend analysis, Theil-Sen trend 

estimates an increase of 0.67 %/year and 0.02 %/year for night-time and night-time data subsets, respectively. 

 

Keywords: Surface ozone, Day-time, Night-time, Trend analysis 

 

Introduction 

Cape Point Global Atmosphere Watch (GAW) is one 

of the World Meteorological Organization (WMO) 

GAW stations that monitor continuous surface ozone 

(O3) to study background-level trends in the 

atmosphere. Approximately 90% of the total O3 is 

located in the stratosphere and only 10% is located in 

the troposphere. Stratospheric O3 acts as a shield that 

protects the Earth from harmful radiation. On the other 

hand, the tropospheric O3 is formed through 

photochemical reactions of nitrogen oxides (NOx) and 

volatile organic compounds (VOCs) or through 

downward movement of O3 from the stratosphere to 

the troposphere. Nitrogen oxides and VOCs are 

emitted from anthropogenic sources such as fossil fuel 

power plants, industrial activities, and transportation 

as well as natural sources such as lightning and soil 

(NOx). In the presence of sunlight, nitrogen dioxide 

(NO2) undergoes photochemical reactions to produce 

oxygen atom (O), which reacts with oxygen molecule 

(O2) to form O3 (Lelieveld and Dentener, 2000). 

Meteorological parameters such as temperature, wind 

speeds, sunlight and the mixed layer depth plays a 

crucial role in O3 mole fractions.  

 

In general, O3 mole fractions are expected to be higher 

during day-time as compared to night-time because of 

photochemical reactions that take place during the day 

(Seinfeld and Padis, 2006). Night-time is characterised 

by low O3 mole fractions, O3 destruction by NO 

titration and deposition process (Ghosh et al., 2013).  

Earlier studies   reported that it is advisable to separate 

day and night-time O3 analysis due to different 

influencing factors that take place during these times 

(Abdul-Wahab et al., 2005; Özbay et al., 2011). 

Ghosh et al. (2013), reported the important role of 

(nitrogen dioxide) NO2-(nitrate) NO3- (dinitrogen 

pentoxide) N2O5 cycle in the night-time O3 chemistry 

as the cycle strongly affects the depletion process. 

Therefore, the Cape Point O3 data is separated into day 

and night-time data in order to investigate if the 

observed O3 increase occurs in both data subsets or is 

related to photochemical reactions that occurs in day-

time. 

 

Remarkably, a study by Oltmans et al., (2013) reported 

O3 increase at Cape Point and other GAW stations in 

the southern hemisphere (Cape Grim and Lauder) in 

recent years.  

 

Data and method 

The Cape Point GAW station was established in 1978. 

The surface ozone long-term monitoring program 

began in 1983 from a 30m air intake line. In 1996, a 

second instrument was installed from the 4m air 

intake. Since then, the surface O3 mole fractions have 

been monitored using two Thermo Electron (Teco) 

analyzers based on an ultraviolet (UV) detection 

technique. Daily zeroes are performed to check the 

long-term stability of the instruments. Furthermore, 

instrumental verifications are performed quarterly 

using the primary calibrator (TEI 49i-PS) traceable to 

WMO World Calibration Centre (WCC-EMPA) based 

in Switzerland. 

 

In addition to the site verifications, calibrations are 

performed by WCC-EMPA every four years as from 

1997. The latest O3 instrument performance audit was 

performed in 2015.  
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The main aim of this study is to investigate day and 

night-time surface O3 variability and trends. The 

trends and its significance are investigated using the 

Mann–Kendall trend test statistic.  This method is 

defined as a non-parametric, rank-based method which 

is commonly used to extract monotonic trends in the 

time series of climate data, environmental data or 

hydrological data. Mann-Kendall test statistics was 

computed using the formula: 

 

 
 

 where,  

 
average value of S is E[S] = 0, and the variance σ2 is 

given by the equation: 

 

where   

 

In respect to the above-defined Z-transformation 

equation, this study reflects a 5% confidence level, 

where the null hypothesis of no trend is rejected if |Z| 

> 1.96. 

 

Results and discussion 

As indicated in Fig. 1, surface O3 mole fractions show 

a minimum of 23.9 ± 6.9 ppb at 09:00 am and start to 

increase after the morning peak hour (09:30 am) 

reaching a maximum of 27.2 ± 7.7 ppb at 03:00 pm. 

Such an increase is followed by a decrease after 05:00 

pm. Therefore, the current study uses local time 

intervals of 11:00 am - 04:00 pm and 11:00 pm - 04:00 

am for day and night-time, respectively. However, the 

actual day and night-time vary with seasons.  

 

  
Figure 1. The average diurnal cycle of all year average 

surface O3 mole fractions during 2000 to 2018. 

 

As shown in Fig. 2, day-time surface ozone mole 

fractions are slightly higher than the night-time ozone 

mole fractions with all-day being the average of the 

day and night-time. The mean mole fractions of day 

and night-time are 26.6 ppb and 24.9 ppb, 

respectively. Slightly higher variations are observed in 

day-time compared to night-time as indicated by 

standard deviation of 6.0 ppb and 5.3 ppb for day and 

night-time, respectively. The observed results of 

higher surface ozone during the day is in agreement 

with previous studies that reported the occurrence of 

photochemical reactions in day-time (e.g. Reddy et al., 

2011; Alghamdi et al., 2014). However, due to the 

geographical location of the station, there is less ozone 

destruction by NO during night-time (as compared to 

a city environment, for example). Hence, night-time 

O3 mole fractions at Cape Point are not as low as in 

sub-urban and urban stations. Similar findings were 

reported in a study by Nzotungicimpaye et al., (2014). 

In general, all seasons indicate a higher average in day-

time data subsets. The summary of this statistic is 

shown in Table 1.  

 

 
Figure 2. The average and the standard deviation (error 

bars) of all year average surface O3 mole fractions for 

the all-day (diamond), day-time (circle) and night-time 

(tri-angle) data subsets during 2000 to 2018. 
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Table 1. The average and the standard deviation of all 

year and seasonal average surface O3 mole fractions 

for the all-day, day-time and night-time data subsets 

during 2000 to 2018. 
Data 

set 

All year Summer Autumn Winter Spring 

All-

day 

 

25.4±5.4 18.2±5.2 24.6±5.8 30.7±5.6 27.9±5.1 

Day-

time 

26.5±5.7 20.0±5.8 26.0±6.2 31.0±5.4 28.9±5.2 

Night-

time 

24.8±5.0 17.3±4.5 23.9±5.5 30.4±5.5 27.6±4.7 

 

Oltamans et al. (2013) reported O3 increase at Cape 

Point and other GAW stations in the southern 

hemisphere. However, in recent years, a strong 

increase in surface O3 mole fractions has been 

observed, especially in the time period of 2016 to 

2018. An average of 25.5, 26.6 and 24.9 ppb has been 

recorded over the study period for all-day, day and 

night-time, respectively. In 2018, O3 average exceeds 

the long-term average by 7.1, 7.6 and 6.8 for all-day, 

day and night-time, respectively. The observed 

increase in surface ozone might be related to 

meteorological factors such as wind speed and 

direction dynamics. As indicated in Fig. 3, the 

prevailing winds from 2007 to 2013 are South-

easterlies that brings clean air from the ocean to the 

station. As from 2014 to 2018, a change in the average 

observed wind direction from south-east to east is 

observed. In the years that seem to indicate an increase 

of ozone at Cape Point station, the year 2016 is only 

year that seem to indicate a normal south-east 

direction. Moreover, Tarasova and Karpetchko (2003) 

reported that winds with low speed, high solar 

radiation, high temperatures and low humidity 

promotes O3 increase. It is worth to also mention that 

wind speeds at Cape Point seem to have reduced in 

recent years. Also, Cape Town and its surrounding 

areas was affected by a massive drought in 2015-2017 

which provides another factor that could lead to 

increasing trends of ozone via a process of increasing 

trends of terrestrial temperatures.  

 

 
Figure 3. Percentage frequency occurrence of surface 

O3 mole fraction relative to wind direction from 2007 

to 2018. 

As indicated in Table 2, the increase in surface O3 is 

evident in all data subsets, with stronger increase 

observed in the night-time data. The linear trends 

reached 0.19, 0.14 and 0.22 ppb/year for all-day, day 

and night-time, respectively, with the strongest z-score 

of 3.30 observed with night-time data. With the 

exception of day-time, time series indicates a 

significant increase of ozone trends with positive z-

score which are above 1.96 (95% confidence level). 

The Theil-Sen trend in Fig 4 (a), (b) and (c) shows a 

similar strong increase of 0.66 %/year in the night-

time data, while it indicate an increase of 0.39 %/year 

and 0.01 %/year in the all-day and day-time data, 

respectively. However, when excluding 2017 and 

2018 data, the Theil-Sen trend shows an increase of 

0.28 and 0.03 %/year in the night-time and all-day, 

respectively. While a decrease of -0.34 %/year is 

observed for day-time. Similar results on high night-

time trends relative to day-time were reported by Xu 

et al. (2016) at the Mt Waliguan GAW station in 

China. 

 

Table 2. The linear slope, z-score and the p values of 

all year surface ozone mole fraction for the all-day, 

day-time and night-time data subsets during 2000 to 

2018. 
Data subset Linear slope Z-score P-value 

All-day 0.19 2.82 0.0048 

Day-time 0.14 1.71 0.0872 

Night-time 0.22 3.30 0.0010 

 

(a) 

 
(b) 

 
(c) 

 
Figure 4. Theil-Sen trend estimates of surface O3 mole 

fraction for the all-day (a), day-time (b) and night-time 

(c) data subsets during 2000 to 2018. 
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Conclusions 

The observed O3 increase at Cape Point occurs in all 

three data subsets. The changes in wind direction over 

the last years could potentially be the reason for the 

observed surface O3 increase. Moreover, further 

investigation is required on: 

 Meteorological parameters such as temperature 

and solar radiation as they play a big role in O3 

increase.  

 Seasonal trends need to be investigated further by 

using similar trend analysis used for day and 

night-time data.  

 Ozone data from other southern hemisphere 

stations need to be analysed for trends in order to  

know if the current O3 increase is the southern 

hemisphere phenomenon.  

 Furthermore, ozone data from Cape Town 

stations such as Goodwood and Molteno need to 

be analysed for trends in order to know if the 

current O3 increase is related to 2017 Cape Town 

drought.  
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ABSTRACT 

Evaluation of different models for estimating net radiation flux (𝑅𝑛) is indisputable for identification of the most 

accurate model. In this study, two new 𝑅𝑛 models were evaluated, relative to the procedure recommended by Food 

and Agriculture Organization for estimation of 𝑅𝑛 (FAO56-𝑅𝑛) in southern Africa. The proposed model performed 

better than all the evaluated models at four sites, with regression coefficient (𝑟2) values greater than 0.90 and index 

of agreement (𝑑) values greater than 0.97. These findings suggest that the proposed model presented here is a 

promising approach to estimate 𝑅𝑛 in southern Africa with minimum input data. 

 

Keywords: Calibration, Net radiometer, Modelling, Radiative flux, Reference crop evapotranspiration, Validation 

 

Introduction 

Accurate quantification of crop water use is critical 

for crop-yield modelling and efficient use of water 

resources (McMahon et al., 2013). Crop water use is 

often estimated based on the concept of reference 

evapotranspiration (𝐸𝑇0). However, in situ 

measurements of 𝐸𝑇0 are only available in well-

equipped and specific research sites (McMahon et 

al., 2013). Therefore, 𝐸𝑇0 is often estimated using 

FAO Penman-Monteith equation (Allen et al., 1998). 

The FAO-56 PM  equation requires measurements 

of 𝑅𝑛, which are often not readily available from 

standard weather stations in developing countries in 

particular (Carmona et al., 2017). Therefore, 𝑅𝑛 is 

often estimated from standard meteorological data 

using different empirical models, which often differ 

in procedures used to compute clear‐sky solar 

radiation, cloud cover, net outgoing longwave 

radiation, atmospheric emissivity and actual vapour 

pressure of the air (Allen et al., 1998; Kjaersgaard et 

al., 2007; Irmak et al., 2010).  

 

Improved estimation of 𝑅𝑛 can provide more 

accurate prediction for 𝐸𝑇𝑜 in regions facing data 

scarcity, in southern Africa in particular 

(Sabziparvar and Mirgaloybayat, 2015). There is a 

vital need identify the most accurate and robust 

model that could be used to estimate 𝑅𝑛 for 

improved estimation of 𝐸𝑇𝑜 with minimal data input 

requirements. Within this context, evaluation of 

different models to estimate 𝑅𝑛, relative to the  

 

recommended FAO56-𝑅𝑛 model and in situ 

measurements of 𝑅𝑛 is indisputable. The availability 

of in situ 𝑅𝑛 data at five sites, representing different 

climatic and land cover conditions of southern 

Africa enables the unique opportunity for the 

evaluation three models to estimate 𝑅𝑛 within the 

FAO-56 PM equation. The main aim of this study 

was to develop and evaluate two new alternative 

procedures with relative minimum input data 

requirements to estimate 𝑅𝑛 without any site-

specific calibrations, relative to the recommended 

FAO56-𝑅𝑛 model and in situ measurements of 𝑅𝑛 in 

southern Africa. 

Materials and methods 

Modelling net irradiance 

Proposed net radiation model 

According to Arya (2001), 𝑅𝑛 (MJ m-2) is expressed 

as: 

 𝑅𝑛 = 𝑅𝑠 − 𝑟𝑅𝑠 + 𝐿𝑑 − 𝐿𝑢 (1) 

where 𝑟 (dimensionless) is a reflection coefficient of 

the grass surface (approximately 0.23), 𝐿𝑑   (MJ m-2) 

is the incoming infrared irradiance flux emitted by 

the atmosphere and 𝐿𝑢 (MJ m-2) is the outgoing 

infrared irradiance flux emitted by the earth surface. 

𝐿𝑑 is calculated based on theoretical Stefan–

Boltzmann relation: 

mailto:myenil@arc.agric.za
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 𝐿𝑑 = 𝑒𝜎𝑇𝑎𝑖𝑟
4 (2) 

According to Crawford and Duchon (1999),  is the 

emissivity of the earth surface and is generally 

expressed as: 

 𝑒 = 𝐶𝑓+((1 − 𝐶𝑓)0
) (3) 

where 𝐶𝑓 is the cloudiness factor (dimensionless) 

and 0 (dimensionless) is the effective emissivity of 

the atmosphere (under clear-sky conditions). 

According to Crawford and Duchon (1999), 𝐶𝑓 is 

determined as: 

 𝐶𝑓 = 1 − 𝑅𝑠 𝑅𝑠 𝑐𝑙𝑒𝑎𝑟⁄  (4) 

In this paper we propose two models which differ 

only in the procedures used to compute 0 i.e. Eq.(5) 

utilize the Idso and Jackson (1969) equation while 

Eq.(6) uses the procedure of Brutsaert (1975): 

𝑅𝑛 = 0.77𝑅𝑠 + [𝐶𝑓 + ((1 − 𝐶𝑓) × (1

− (0.261 exp(−7.77

× 10−4)

× (273.15 − 𝑇𝑎𝑖𝑟)
2))]

− 𝜎𝑇𝑎𝑖𝑟
4 

(5) 

𝑅𝑛 = 0.77𝑅𝑠 + [𝐶𝑓 + ((1 − 𝐶𝑓)

× 1.24 (
𝑒𝑎𝑖𝑟

𝑇𝑎𝑖𝑟

)

1
7
] − 𝜎𝑇𝑎𝑖𝑟

4 

(6) 

where 𝑅𝑠 is the solar irradiance (MJ m-2), 𝑇𝑎𝑖𝑟  is the 

air temperature at screen height of 2 m  (K), 𝑒𝑎𝑖𝑟  is 

the actual saturation vapour pressure (kPa),  is the 

emissivity of the earth surface, 𝜎 is the modified 

daily time-scale Stefan-Boltzmann constant (4.9×10-

9 MJ m-2 K-4).  

2.1.2 Procedure of estimating 𝑹𝒏 within the FAO-56 

PM equation 

According to Allen et al. (1998), the FAO56-𝑅𝑛 

model is as follows: 

𝐹𝐴𝑂56 − 𝑅𝑛

= [𝑅𝑠(1 − 𝑟)] − [4.903

× 10−9𝑇𝑎𝑖𝑟
4(0.34

− 0.14√𝑒𝑎𝑖𝑟) (1.35
𝑅𝑠

𝑅𝑠 𝑐𝑙𝑒𝑎𝑟

− 035)] 

(7) 

 

Data collection  

Five sites which represent a wide range of 

elevations, climatic conditions and land cover 

conditions across southern Africa were selected for 

models evaluations (Table 1). These sites were 

selected based on availability of quality 𝑅𝑛 data and 

corresponding meteorological data. Data from 

UKZN were downloaded from the AIM system 

(http://agromet.ukzn.ac.za:5355/index.html). Data 

from Two Streams were collected as part of the 

South African Water Research Commission (WRC) 

research project K5/2022: The long term impact of 

Acacia mearnsii trees on evaporation, streamflow, 

low flows and ground water resources (Clulow et al., 

2011). Data from Mfabeni Mire and Embomveni 

Dunes sites were collected as part of WRC research 

project K5/1704: Evapotranspiration from the 

Nkazana Swamp Forest and Mfabeni Mire (Clulow 

et al., 2012). Data from Letseng site, data were 

acquired from the UKZN database collected by a 

postgraduate student and are not officially been 

published previously. All collected were summed to 

daily time step to allow comparisons with outputs 

from 𝑅𝑛 models. 

Results and discussion 

To evaluate the performance of the new 𝑅𝑛 models 

(Eq. 5 and6) and FAO56-𝑅𝑛 model (Eq. 18), 

comparisons were made between the daily estimates 

(𝑅𝑛𝑒) and 𝑅𝑛 at all five sites. A summary of 

statistical results of the comparisons between 𝑅𝑛 and 

𝑅𝑛𝑒 values from three 𝑅𝑛 models at all five sites is 

presented in Table 2.  

Table 2: Site-wise ranking of statistical results of the 

comparisons between 𝑅𝑛 and 𝑅𝑛𝑒 values from three 

𝑅𝑛 models (models were ranked based on RMSE). 

Site Model RMSE 

 

MBE 

 
𝒓𝟐 

 

𝒅 

 

Embomve-ni 

Dunes 

Eq. 5 1.09 0.62 0.96 0.98 

 FAO56

-𝑅𝑛  

1.67 1.38 0.96 0.96 

 Eq.6 3.45 3.26 0.94 0.87 

Letseng Eq. 5 1.48 1.16 0.95 0.97 

 FAO56

-𝑅𝑛  

1.87 1.59 0.94 0.94 

 Eq. 6 4.92 4.73 0.95 0.74 

Mfabeni  
Mire 

FAO56

-𝑅𝑛  

1.71 0.11 0.96 0.98 

 Eq. 5 1.82 -0.65 0.96 0.98 
 Eq. 6 3.59 1.97 0.95 0.94 

Two Streams Eq. 5 1.30 -0.18 0.90 0.97 

 FAO56

-𝑅𝑛  

1.56 0.71 0.89 0.96 

 Eq. 6 3.34 2.76 0.82 0.86 

UKZN Eq. 5 2.27 -0.64 0.92 0.97 

 FAO56

-𝑅𝑛  

2.63 -0.59 0.89 0.96 

 Eq. 6 5.27 2.32 0.87 0.89 

 

The observed differences between 𝑅𝑛𝑒 from FAO56-

𝑅𝑛 and 𝑅𝑛 may be attributed to the poor estimation 

of 𝐿𝑑 as a result of using coefficients proposed by 

Allen et al. (1998) without site-specific calibrations 

at our sites. These results were consistent with 

previous studies (e.g. Kjaersgaard et al., 2007; 

Sabziparvar and Mirgaloybayat, 2015; Carmona et 

al., 2017). Therefore, this study confirmed the need 

for site-specific calibrations of coefficients in the 

FAO56-𝑅𝑛 model for accurate 𝑅𝑛 estimates. 

http://agromet.ukzn.ac.za:5355/index.html


90 
 

However, lack of long-term quality radiative fluxes 

data hindered the site-specific calibrations of 

coefficients used in the FAO56-𝑅𝑛 model at our 

sites. 

 

The results also revealed that the proposed new 

model Eq. (5), with less site-specific empirical 

coefficients performed better than all the evaluated 

models at four sites, except at humid coastal 

conditions of Mfabeni Mire. Despite the similarity of 

the equations utilised in both proposed models, 

which only differed in the procedures used to 

compute 0, there were significant differences 

between their 𝑅𝑛𝑒. The observed relative poor 

performance of Eq. (6) may be attributed to the poor 

estimation of 𝐿𝑑 as a result of using 1.24 as an 

empirical coefficient in Brutsaert’s equation, which 

could have lacked the validity under climatic 

conditions of southern Africa. Previous studies have 

demonstrated the need for site-specific calibration of 

Brutsaert’s coefficient which varies with climatic 

conditions to attain best 𝑅𝑛𝑒 (Carmona et al., 2014; 

Cheng and Nnadi, 2014). However, lack of long-

term profile measurements of 𝑒𝑎𝑖𝑟  and 𝑇𝑎𝑖𝑟  often 

hinders the site-specific calibrations of Brutsaert’s 

coefficient (Cheng and Nnadi, 2014). 

 

Conclusions  

The results of this study indicated that 𝑅𝑛 can be 

estimated well from standard weather station data 

using the FAO56-𝑅𝑛 model and the two proposed 

models. Results also confirmed the need for site-

specific calibrations of coefficients used in the 

FAO56-𝑅𝑛 and Eq. 6 models to attain the best 𝑅𝑛𝑒, 

which limit their applicability in southern Africa 

where long-term profile measurements of radiative 

fluxes, 𝑒𝑎𝑖𝑟  and 𝑇𝑎𝑖𝑟  data required for calibrations are 

lacking. The findings of this study suggested that the 

proposed model Eq. (5) presented here is the most 

promising, alternative and appropriate to estimate 

𝑅𝑛 in the FAO-56 PM equation with minimum input 

data in southern Africa without any site-specific 

calibrations.  
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Occupational heat strain has direct health and productivity outcomes. We evaluate Wet Bulb Globe Temperature 
(WBGT) heat index for the Irene weather office outdoor workers. The results show that outdoor workers were exposed 
to WBGT index values between 26°C to 32°C, representing moderate to high heat strain risk for 633 daytime hours 
for the period May 2018 to March 2019. Interventions such as the introduction of protective clothing and rescheduling 
of work are important options in managing heat strain, maintain productivity levels and ensure the overall wellbeing 
of outdoor workers exposed to heat stress conditions. 
  
Keywords: Outdoor workers, Occupational Heat strain, Productivity, Human health, Climate change  
 
Introduction 
As the impact of climate change and variability 
intensifies, measurement of meteorological 
parameters and the knowledge of the associated 
impacts on human health and the environment 
becomes important. The fifth assessment report (AR5) 
of the Intergovernmental Panel on Climate Change 
(IPCC) indicates that during the 21st century, the 
global surface temperature is expected to rise from 1.1 
to 2.9°C for the lowest greenhouse gas emission 
scenario and from 2.4 to 6.4°C for the highest 
greenhouse gas emission scenario (IPCC, 2014). 
These projections have a negative implication for 
human health, ranging from respiratory and 
cardiovascular effects to death (Wright, 2014). 
Outdoor workers are most at risk due to exposure to 
direct sunlight and other weather elements i.e. 
ultraviolet radiation. Further, un-acclimatized workers 
face a greater risk of heat strain than acclimatized 
workers whose bodies will take an extended time to 
regulate (Park, Kim and Oh, 2017).  
 
This work evaluates Wet Bulb Globe Temperature 
(WBGT) heat index for outdoor workers at the Irene 
weather office and those in the surrounding i.e. the 
Agricultural Research Council (ARC) animal 
production division. The results of this study will 
inform SAWS management if it is necessary to put 
measures in place to protect workers from 
occupational heat strain as required by the South 
African Occupational Health and Safety Act No 85 of 
1993 section 8 which states that every employer shall 
provide and maintain, as far as is reasonably 
practicable, a working environment that is safe and 
without risk to the health and safety of his employees.  
 
The WBGT index has been approved as an 
International Standard through the International 
Organization for Standardization (ISO) (ISO, 7243) 
for heat load assessment in an occupational setting and 
sports applications (ISO, 1989). The WBGT 
combines, within a single index, temperature, 
humidity, wind speed, and heat radiation, all of which 
affect rates of heat transfer from the body (Kjellstrom, 
et al, 2016). Outdoor workers exposed to heat 

experience heat strain and have losses in productivity 
that increased by 2.6% for every degree increase 
beyond 24°C WBGT, more especially during hotter 
months (Flouris, et al. 2018). In a study by Mathee et 
al. (2010), outdoor workers in selected study settings 
reported heat strain symptoms such as sunburn, 
sleeplessness, irritability, and exhaustion on days 
where daily maximum temperatures reached 40°C, 
these weather conditions resulted to difficulties in 
maintaining work productivity. The health effects 
from weather exposure will vary from person to 
person. It is noted that individuals have different 
baseline propensities to feel hot or cold and that 
depends on their physiology, circadian and metabolic 
cycles which vary dramatically across individuals 
(Obermeyer, Samra and Mullainathan, 2017).  
 
Instrumentation and Methodology 
There are six main components of weather 
measurements including temperature, atmospheric 
pressure, wind, humidity, precipitation, and 
cloudiness (WMO, 2008). In order to assess human 
biometeorological conditions, the South African 
Weather Service (SAWS) has introduced additional 
sensors including Campbell Scientific BlackGlobe-L 
which is one of the most common instruments used for 
assessment of heat stress. The system also includes 
erythemal irradiance and solar radiation measurements 
on a horizontal surface. Together, these components 
describe the weather at any given time and influence 
how we feel and our productivity level in the 
workplace.  
 
The field study was conducted at the Irene weather 
office (25.5°S; 28.1°E). The weather office, shown in 
Figure 1, is a technical centre for SAWS and it’s 
located within the city of Tshwane Metropolitan 
Municipality, 20 km southeast of Pretoria. Personnel 
working in this office are mostly meteorological 
technicians as well as two tradesmen aid responsible 
for routine functions such as garden maintenance as 
well as cleaning and maintenance repairs of the 
weather office yard over extended hours. Observers 
spend approximately 15 min every hour or longer 
depending on the weather, for 24 hours daily 
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collecting weather observations, mainly on the roof 
top at 360-degree view.  
 

Figure 1: Irene Weather Office 
 
Eleven months of data from May 2018 to March 2019 
was used in this study. The data is sampled every 10 
seconds using Campbell Scientific data logger 
(CR1000) and further averaged to hourly and daily 
time intervals.  
The station measures relative humidity (%), wind 
speed (m s-1) and direction, rain (mm), solar radiation 
(W m-2), erythemal irradiance (W m-2) that measure 
ultraviolet radiation (UVB), air temperature (Twnb) 
(°C), natural wet-bulb temperature (Ta) (°C), and the 
globe temperature (Tg) (°C), using a Black Globe 
Temperature Sensor. The measurements are done at 
the height below 1.5 m, corresponding to the average 
height of the center of gravity for adults (Mayer and 
Hoppe, 1987). The WBGT is computed from air 
temperature (Tnw) (°C), globe temperature ( ) (°C), 
and the natural wet-bulb temperature ( ) (°C) for 
outdoors (See Eq. 1).  
 

 (1) 
 
Where: 

 Air temperature/dry bulb temperature, °C; 
: Black globe temperature measured by a globe 

15cm in diameter, °C; and 
: Natural wet bulb temperature, °C 

 
and combines the effects of solar radiation, 

humidity, air temperature and wind (Havenith and 
Fiala 2016). The occupational health standards risk 
categories are followed where (WBGT <25°C: low 
risk; 26-33°C: moderate to high; and +34°C: extreme 
risk (ISO, 7243). Hourly rest periods are 
recommended when WBGT reaches 26°C for heavy 
labour and no work when WBGT reaches 34°C (Hyatt, 
2010). The proportions of work and rest or no work 

will vary per individual, more and longer periods of 
rest are necessary as WBGT risks increase.  
 
Results and Discussion  
An annual WBGT index for Irene is presented in 
Figure 2. A clear variation is shown were the WBGT 
index is high during spring and summer and much 
lower in winter. During winter, the maximum WBGT 
index recorded was 23.06°C. 
 
In spring and summer, the maximum WBGT index 
recorded at Irene was 29.78°C and 31.7°C 
respectively.  

Figure 2: Wet Bulb Globe Temperature index time 
series for Irene 
 
Between September and March, WBGT index values 
range between 26°C to 32°C, representing moderate to 
high heat strain risk. For the diurnal cycle, WBGT 
index values of 30°C are noted most frequent between 
13:00 to 15:00 in the afternoon for the months 
November to March. The tradesmen’s aid who spend 
extended hours outdoors as well as meteorological 
technicians are most at risk, in particular in the 
afternoon during the hottest hours of the day. Table 1 
shows the hourly WBGT index heat strain risk for 
outdoor workers at Irene. 
 
Table 1: WBGT index values and hours of exposure 

Heat Strain Risk 

category 

Hours of exposure Months of 

exposure  

<25°C: Low risk 7407 night hours 
included 

April to August  

26-33°C: Moderate 

to high 

633 September to 

March  

+34°C: Extreme 
risk 

0  

 
For 633/8040 daytime hours, workers were exposed to 
moderate to high heat strain between 10:00 to 17:00 
from the month of September to March. Moderate to 
high risk exposure can result in heat strain which can 
cause a wide variety of health disorders, including heat 
stroke, more especially for the un-acclimatized 
workers and workers doing heavy physical work. 
During the study period, the WBGT index value of 
34°C was never reached at this location. Maximum 
WBGT recorded was 32°C, representing moderate to 
high risk. To reduce or avoid heat strain for outdoor 
workers, in particular, those exposed for extended 

gT

aT

agnw TTTWBGT 1.02.07.0 

nwT
gT

aT

nwT gT



94 
 

hours, SAWS management must introduce protective 
strategies such as protective clothing, make provision 
for frequent breaks or reschedule work for a time of 
day that is cooler or to delay the job altogether without 
compromising work productivity. Management must 
also ensure appropriate access to water and shading to 
offer relief from the heat. Furthermore, develop an 
early warning and surveillance system or a hazard 
communication alert using internal resources to 
inform workers of dangerous heat stress conditions. 
Training of workers to recognise the warning signs of 
heat strain is essential for effective heat strain risk 
management. 
 
Conclusions 
The WBGT index is the heat stress index of preference 
in the Occupational Health and Safety Act, No. 85 of 
1993. The results of this study show that outdoor 
workers were exposed to moderate to high heat strain 
during the 633 daytime hours. Such WBGT index 
values require management interventions that will not 
compromise work productivity and the health of 
outdoor workers. 
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The aim of this study was to classify and characterise fires in the Richards Bay area using a data mining approach and 

MODIS fire data. A clustering algorithm was applied to 227 days of brightness temperatures which revealed three 

categories i.e. low, moderate and high intensity days. Fires in the Richards Bay area may be characterised by these 

categories. The largest proportion of days were found to be low intensity days, where brightness temperatures ranged 

from 306-338 K. These categories may be useful for fire prediction models and fire management strategies, in terms 

of efficient resource allocation. 
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Introduction   

Southern Africa has been identified as a region having 

some of the most extensive biomass burning in the 

world (Roy et al. 2005). According to Strydom and 

Sauvage (2016), the African continent has been 

termed “the fire continent” due to the high number of 

fires experienced (more than 30 000 reported during 

the 2008 and 2009 fire seasons). Monitoring of fires is 

therefore an important environmental issue as they 

have a negative impact on plant and animal life, as 

well as are a threat to society due to the risk of 

fatalities. Remote sensing technologies such as 

satellites have become a valuable tool that enables the 

monitoring and analysis of fires over large regions. 

The Moderate Resolution Imaging Spectroradiometer 

(MODIS) satellite product is one such example, 

whereby the monitoring of active fires is possible by 

the use of hotspot detection algorithms. In most cases 

the MODIS satellite detects vegetation fires, which is 

of interest for the present study (Roy et al. 2005). More 

specifically, this study aims to characterise vegetation 

fires from MODIS using a data mining approach. Data 

mining can be simply described as the process of 

discovering patterns in data. Cluster analysis (or 

clustering) is a well-known and commonly-used data 

mining method that was employed for this study. 

Clustering groups together similar data observations 

with the aim of finding patterns, where it is often the 

case that these patterns may have been previously 

unnoticed. Clustering has found application across a 

wide variety of fields including atmospheric and Earth 

sciences. One of the uses of clustering is classification, 

and for this study, clustering was applied for the 

classification of MODIS fire data. Considering the 

negative impact fires can have on vegetation, soil, 

atmosphere, animal and human life, increasing our 

knowledge on fires is certainly required.  

 

Chen et al. (2017) successfully applied clustering to 

establish fire regimes for China using MODIS active 

fire data. For South Africa, previous studies focusing 

on the analysis of fires, for all or some parts of the 

country, were conducted by Strydom and Sauvage 

(2016) and Shikwambana et al. (2019). Although these 

studies utilised satellite data, they did not make use of 

data mining methods for the analysis. 

  

The aim of the present study to provide a classification 

and characterisation of vegetation fires in the Richards 

Bay area, using a data mining approach and MODIS 

fire data. KwaZulu-Natal is one of three provinces 

experiencing the most severe fire season, i.e. during 

August, due to the native vegetation, climate and 

topography (Strydom and Sauvage, 2016). Richards 

Bay, located on the eastern coast of South Africa, 

within the KwaZulu-Natal province, experience fires 

mainly during the period of May-November, peaking 

during the month of August.  

  

Instrumentation and Method 

MODIS fire data  

Archived fire data for the Richards Bay (27.659S; 

32.395E) area was obtained from NASA’s Fire 

Information for Resource Management System 

(FIRMS), obtained from the MODIS instrument. From 

the available options, the MODIS C6 fire product was 

used. This product makes use of the most up-to-date 

algorithms and processing extends to oceans and other 

large bodies. The Richards Bay area often has fires due 

to the vegetation burning and was thus selected as the 

mailto:paulenegovender@gmail.com
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region of interest. The selected time period was from 

January to December 2015. Significant land damage 

due to a fire in the north areas of Richards Bay was 

within this period (Zululand Observer, 2015). Pre-

processing was applied to the original retrieved data 

file. This included the removal of night time 

measurements, as only day time fire data were 

included for the analysis. For each day the 

measurement with the highest confidence level was 

used. A total of 227 days were retained for the 

analysis. The detection of fires is indicated by the 

brightness temperature, given in Kelvin (K), where 

temperatures above 330 K were considered to be 

active fires (Justice et al. 2004).   

 

Data mining approach: Clustering 

The k-means algorithm (MacQueen, 1967) is a well-

known clustering technique in data mining. Among 

the many clustering algorithms available, the reason 

for choosing k-means is because of its simplicity, ease 

of implementation and computational speed. Given a 

set of n objects, the method constructs k partitions of 

the data, where each partition represents a cluster and 

where k  n. The partition divides the data into k groups 

such that each group contains at least one object. The 

k-means technique was used here for the classification 

of fires, and was applied to the brightness temperature 

variable. The k-means algorithm aims to minimise the 

following objective function:  

Figure 1: Sequence of days with corresponding 

brightness temperature. Red line indicates 330 K. 

 

𝐸𝐷 = ∑ ∑ 𝑑(𝑥,𝑚𝑖)𝑥∈𝐶𝑖

𝑐
𝑖=1          (1)  

 

where  is the criterion function,  is the center of the 

cluster  and  is the Euclidean distance between a point 

x and . For further details of the algorithm, the reader 

is referred to (Everitt, 2011). The value of k in the 

algorithm has to be chosen in advance. For the present 

study, a silhouette analysis was used to determine the 

optimal number of clusters. Silhouette values are in the 

range [-1;1], where 1 indicates the best clustering 

result and -1 the worst (Kaufman and Rousseeuw, 

2005). The optimal number of clusters was found to be 

k = 3.  

 

Results and Discussion 

The sequence of days and corresponding brightness 

temperatures for year 2015 is shown in Fig. 1. Of the 

227 days analysed, 58% experienced fires. The highest 

brightness temperature that occurred during the 

analysis period was found to be 426 K (i.e. 5 

November 2015). Clustering was applied to the set of 

227 days, producing 3 clusters as the optimal solution. 

The silhouette plot (Fig. 2) produced by the silhouette 

analysis shows the mean silhouette value for each 

cluster. For the k = 3, all clusters have silhouette values 

more than 0.6, indicating a good clustering solution. 

Shown in Figs. 3, 4 and 5 are the histograms of the 

individual clusters. These show the frequency of days 

for the range of brightness temperatures. Cluster 1 

contains days with the brightness temperatures 

ranging from 306 K to 338 K. These days can be 

considered to be “low intensity” days, since most of 

the temperatures do not reach 330 K. This cluster 

contains a mixture of days where some days did not 

experience fires and some days did. Cluster 2 contains 

days with the brightness temperatures ranging from 

339-369 K.  

 
Figure 2: Silhouette plot with mean values, 

percentage and frequency of days for each cluster. 
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Figure 3: Histogram for low intensity days. A total of 

35 and 95 days have a brightness temperature below 

330 K and above 330 K, respectively. 

 

Figure 4: Histogram for moderate intensity days. Days 

are mostly evenly distributed across the temperature 

range of 339 K and 369 K.  

Figure 5: istogram for high intensity days. The highest 

frequency were days with a temperature of 377 K 

These days can be considered to be “moderate 

intensity” days. All days in this category experienced 

fires. Lastly, Cluster 3 contains days with the highest 

brightness temperatures i.e. 374-426 K, and thus can 

be regarded as “high intensity” days. For the cluster 

containing low intensity days, a temperature of 327 K 

had the highest frequency (25) of days in this category, 

followed by temperature 336 K with 18 days. For the 

cluster containing moderate intensity days, a 

temperature of 340 K had the highest frequency of 

days (14) in this category, followed by temperature 

355 K with 11 days. For the cluster containing high 

intensity days, a temperature of 377 K had the highest 

frequency (8) of days. Temperatures of 382 K and 392 

K have equal frequencies. Temperatures above 400 K 

constitute 25% of all days in the high intensity 

category.  

These three fire day categories: low, moderate and 

high intensity, therefore characterises the fires in the 

Richards Bay area over the period under analysis. It 

provides useful information on the range and 

frequency of brightness temperature in each cluster. 

The proposed method for classification of fires into 

categories may be useful for fire prediction models 

and fire management strategies. For example, if the 

category of day can be predicted, then resources may 

be allocated more efficiently.  

 

The proportion of days in each category is given Fig. 

6. It can be seen that the largest number of days were 

low intensity days, followed by moderate and high 

intensity. Therefore, low intensity days were found to 

be the most prevalent type in the Richards Bay area, 

and for many of these days there were no fires since 

brightness temperatures were below 330 K.  

Figure 6: Proportion of days in each of the three          

categories. 

 

Conclusions  

This study proposed the use of a data mining approach 

(clustering) for the classification and characterization 

of fires in the Richards Bay area. For the analysis, a set 

of 227 days of MODIS fire data was used. Clustering 

applied to brightness temperatures showed three 
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categories of days that were classified as low, 

moderate and high intensity days. For low, moderate 

and high intensity days, temperatures of 327 K, 340 K 

and 377 K, had the highest frequency, respectively. 

For the Richards Bay area, the highest temperature for 

the analysis period was 426 K. Low intensity days 

were found to be the most frequently occurring 

category, comprising 57% of all days. These 

categories may be useful for the development of fire 

prediction models and fire management strategies, in 

terms of efficient resource allocation. For example, if 

the category can be predicted then resources may be 

allocated accordingly. However, this still remains to 

the explored in greater detail. Further work will 

include (1) investigating seasonality of the fires and 

correlation with the highest brightness temperatures, 

(2) correlating the fire category with the burned area 

to investigate the extent of burned area under low, 

moderate and high intensity days, and (3) applying the 

method to a larger data set. To the best of the authors 

knowledge, this is the first study in South Africa aimed 

at characterising MODIS fire data through a data 

mining approach.   
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Coastal water dynamics are largely influenced by wind variability. Synthetic Aperture Radar (SAR) derived wind 

speeds are used together with Visible Infrared Imaging Radiometer Suite (VIIRS) sea surface temperature and 

chlorophyll-a data to explore the spatial wind variability and wind forcing in the coastal regions of False Bay and the 

Cape Peninsula. The region is dominated by an upwelling favourable south easterly wind regime. High spatial wind 

variability was found with stronger winds corresponding to colder waters and lower chlorophyll content and slower 

winds corresponding to warmer waters and higher chlorophyll concentrations.  

 

Keywords: Sea surface temperature, Chlorophyll-a, Wind forcing, False Bay, Orography, Synthetic aperture radar 

 

Introduction 

False Bay and the greater Cape Peninsula region are 

important on both a conservational level as well as a 

human level. This area is home to a rich and diverse 

marine and coastal life, contains important fishing 

grounds and plays host to a variety of recreational 

activities (Gründlingh & Largier, 1991; van 

Ballegooyen, 1991).  Wind is a primary driver of 

ocean dynamics within this region, and can affect both 

the physics and the biology of the bay (Gründlingh & 

Largier, 1991; Jury et al., 1985a; Jury et al., 1985b; 

Pitcher et al., 2010). Understanding the wind regime 

of this area is important for the continued co-existence 

between man and sea. False Bay is surrounded by a 

unique topography. It is flanked on the east by the 

Kogelberg Mountains and on the west by the Cape 

Peninsula Mountains. To the north lies a low lying 

area known as the Cape Flats. Mountain ridges create 

areas of wind shadow and wind acceleration within 

False Bay and off the Cape Peninsula during the 

predominantly south easterly (SE) winds. Wind 

shadows have been reported to occur in lee of the Cape 

Peninsula Mountains off the northern section of the 

Cape Peninsula as well as across False Bay in a West 

or North-westerly direction. Regions of accelerated 

winds have been observed off of Cape Point and Cape 

Hangklip as well as on either side of the afore 

mentioned wind shadows (Jury  et al., 1985a; Jury  et 

al., 1985b; Jury, 1987). These orographic effects 

influence wind variability in the area which in turn can 

affect other ocean dynamics (Jury et al., 1985a; Jury et 

al., 1985b; Wainman et al., 1987; Shannon et al., 

1991). 

 

Winds are a primary driving force of ocean variability 

along the west coast of South Africa (Jury et al., 

1985a; Jury et al., 1985b; Jury, 1987; Wainman et al., 

1987). Within False Bay and the greater Cape 

Peninsula, spatial wind variability can affect sea 

surface temperature (SST) through ocean driven 

processes such as upwelling, convergence and 

retention. This region is dominated by an upwelling 

favourable SE wind regime. The effect of these 

alongshore winds together with Coriolis forces move 

surface waters seaward, which are then replaced by 

cold, nutrient rich bottom waters (Wang et al., 2015). 

This process can result in localized upwelling fronts. 

Such upwelling fronts have been described off of Cape 

Hangklip and Cape Point during SE winds, with cooler 

waters observed during stronger SE winds (Jury et al., 

1985a; Jury et al., 1985b; Jury 1987; Lutjeharms et al., 

1991) whereas warmer waters have been described 

during north-westerly (NW) winds (Jury 1987; 

Lutjeharms et al., 1991). 

 

Coastal winds can also affect the biology of coastal 

waters. Wind driven upwelling tends to be associated 

with higher nutrient content, while downwelling 

regions are associated with flow convergence and the 

formation of fronts such as the colour fronts often 

observed within False Bay (Shannon et al., 1991). 

However, this relationship is more complex than with 

temperature as biology is influenced by a large suite of 

factors.  Upwelling systems such as False Bay and the 

greater Cape Peninsula are highly susceptible to 

Harmful Algal Blooms (HABs) with HABs having 

been linked to wind stress fluctuations within False 

Bay (Pitcher et al., 2010). Both these temperature and 

colour fronts can be observed using satellite imagery. 
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Historically, coastal winds were recorded using land-

based anemometers or aerial surveys. However, these 

data have a low spatial resolution making it 

challenging to explore spatial wind variability (Holt, 

2004; Dagestad et al., 2013). Currently, satellite based 

observations of surface roughness provide the primary 

source of ocean wind data (Long & Skouson, 1996).  

The recent launch of two Synthetic Aperture Radars 

(SARs) as part of the European Space Agency (ESA) 

Sentinel-1 mission with global coverage every six 

days 

(www.esa.int/Our_Activities/Observing_the_Earth/C

opernicus/Sentinel-1/Introducing_Sentinel-1) 

provides free access to high resolution sea surface 

observations, from which wind estimates can be 

derived. This high spatial resolution wind speed data 

used in synergy with high resolution SST and 

chlorophyll-a (Chl-a) data opens up the opportunity 

for more studies looking at coastal wind variability 

and importantly how this drives other coastal 

dynamics. 

 

Data and method 

Selected case studies from the year 2017 were used to 

explore spatial variability in the wind field over False 

Bay and the Cape Peninsula region during the SE wind 

regime. The SE wind regime is dominant over this 

region and drives upwelling in coastal waters. 

Sentinel-1 SAR images of Interferometric Wide (IW) 

swath mode resolution were used. The CMOD5.n 

algorithm was used in conjunction with 9 km hourly 

ECMWF (European Centre for Medium-Range 

Weather Forecasts) wind directions to derive high 

resolution (1km) wind speeds. Additionally, Visible 

and Infrared Imaging Radiometer Suite (VIIRS) SST 

and VIIRS Chl-a data of a spatial resolution of 750 m 

where used to explore wind forcing on ocean 

temperature and biology within the region. VIIRS 

satellites collect data using infrared and the visible 

spectrum and are affected by cloud cover. Chl-a is 

used as a proxy for primary productivity. GEBCO 

gridded bathymetry data (GEBCO_2014 Grid) was 

used to explore the bathymetry within the bay as well 

as the topography of the surrounding land. A detailed 

description of the data and methods used can be found 

in Seymour (2019). 

 

Within the year 2017 only 13 days where available 

where SE winds were blowing and SAR wind speed 

and VIIRS SST and Chl-a data were all available. Here 

a case of strong SE winds is presented to illustrate the 

impact of the orography on the spatial variability over 

the area.  

 

 

 

Figure 1: The position of the boxes used to calculate 

monthly mean sea surface temperature and 

chlorophyll concentrations for areas of upwelling 

(blue) and wind shadow (red) in False Bay and off the 

Cape Peninsula. 

 

 

For each case, Ekman pumping was derived from the 

wind stress, which was calculated using the drag 

coefficient of Yelland and Taylor (1996). Ekman 

pumping represents the vertical transport induced by 

the wind stress at the ocean’s surface where upwelling 

and downwelling is indicated by a negative and 

positive Ekman value, respectively (Tomczak & 

Godfrey, 2013).  Equation 1 shows how Ekman 

pumping (ω) was calculated where τx  and τy are the x 

and y components of the wind stress τ and f is the 

Coriolis force (Tomczak & Godfrey, 2013).  

 

-ρ0ω = curl (τ / f ) = ∂( τy / f ) / ∂x - ∂(τx / f ) / ∂y        (1) 

A time series for the time period 2012 to 2017 was 

created using v-component ERA-interim wind speeds 

and VIIRS SST and Chl-a values averaged for a region 

of intensified (wind acceleration) and reduced wind 

speeds  (wind shadows) off Cape Hangklip and Cape 

Point (Fig. 1).  ERA-interim wind speeds have a 

spatial resolution of 80 km and a temporal resolution 

of 6 h. These wind speeds were rotated along a north-

west to south-east axis to highlight potential upwelling 

favourable winds. Additionally, the difference in SST 

and Chl-a between the wind shadow and upwelling 

zones for both the Cape Hangklip and Cape Point 

regions were calculated and plotted as a time series. 

 

Results and Discussion 

Spatial variability was evident in the strong SE case 

with winds ranging from 6.7 m/s to 20.8 m/s (Fig. 2a). 

A clear wind shadow can be seen spreading across 

False Bay in a NW direction as well as off the northern 

section of the Cape Peninsula. Within False Bay this 

wind shadow seems to change orientation as the 

direction of the wind changes. The wind shadow off 

http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-1/Introducing_Sentinel-1
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the Cape Peninsula stretched as far as 62 km in one 

case. Areas of wind acceleration were observed 

adjacent to these areas of wind shadow as well as 

around Cape Hangklip and Cape Point (Fig. 2a). These 

wind shadows are likely a result of a capping inversion 

layer preventing wind from flowing over the tallest 

mountain ridges. Similarly, the wind acceleration is 

likely caused by vertical compression as wind is 

accelerated between this inversion layer and mountain 

ridges, as well as deflected seaward around Cape 

Hangklip and Cape Point. This capping effect and 

compression is linked to the southward ridging of the 

South Atlantic Anticyclone (SAA), which intern 

brings with it the SE winds (Atkins, 1970; Jury, 1987). 

In the VIIRS SST and Chl-a maps, cooler waters are 

seen in regions of intense wind speeds and warmer 

waters in wind shadow regions (Fig. 2b). Some 

correspondence was found between winds speed and 

Chl-a with higher concentration found in areas of 

decreased winds (Fig. 2c). However, this was not as 

distinct as with SST. Biology is more complex and is 

likely influenced by a large amount of factors. 

 

The physical ocean is expected to be influenced by this 

strong spatial variability in the wind regime. Within 

False Bay SE winds and the effects of the Coriolis 

force result in Ekman transport away from the coast.  

High spatial variability in the wind regime results in 

areas of convergence (downwelling) and divergence 

(upwelling), shown as positive and negative Ekman 

pumping (Fig. 3). During the strong SE case, vertical 

upwelling velocities of up to 614.0 m/day and 

downwelling of up to 305.1 m/day were estimated 

(Fig. 3). Strong winds along the northern shores of 

False Bay resulted in strong upwelling. This upwelled 

water would be advected away from the coast towards 

the wind shadow zone. Here, weaker Ekman transport 

results in the slowing down of the movement of these 

waters and eventually downwelling, resulting in an 

area of convergence across the bay and the retention 

of waters within the northern half of False Bay (Fig. 

3). Warmer waters have been described in the north of 

False Bay during prevailing SE winds (Lutjeharms et 

al., 1991). This convergence zone across the bay 

created by the wind shadow could explain this as SE 

winds result in upwelling along northern shores but the 

wind shadow prevents water from leaving the bay 

allowing it to warm up while preventing mixing with 

cooler waters at the  mouth of the bay. 

 

 

Figure 2:  a) SAR derived wind speeds in m/s, b) 

VIIRS sea surface temperature (SST) map in °C, c) 

VIIRS chlorophyll-a (Chl-a) map in mg/m3 for a case 

of strong south-easterly winds (2017-12-09) in False 

Bay and the Cape Peninsula. 

 

 

(a) 

(b) 

(c) 
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Seasonality can be seen within the time series, with SE 

wind predominantly occurring during summer months 

and corresponding to warmer waters and higher Chl-a 

values (Fig. 4). During winter months, NW winds 

dominate along with cooler waters and lower Chl-a. 

The difference in SST and Chl-a between wind 

shadow and upwelling regions was stronger during 

summer months and SE winds, with warmer waters 

and higher Chl-a found in wind shadow zones (Fig. 4). 

During winter months these differences were 

observably lower with upwelling regions reaching 

temperatures warmer than corresponding wind 

shadow regions in some cases. This is likely due to a 

decrease in upwelling favourable SE winds and a more 

dominant NW wind regime. On average, temperatures 

within False Bay were noticeably warmer than off the 

Cape Peninsula (Fig. 4). Again, this may be due to 

water retention within the bay as explained previously 

(Fig. 3). Additionally, on the Cape Peninsula side 

upwelling occurs in a more ‘open’ system and along a 

steeper bathymetry resulting in less water retention 

and deeper colder waters being brought to the surface. 

Figure 3:  Ekman pumping maps in m/day over False 

Bay and the Cape Peninsula for a case of strong south-

easterly winds (2017-12-09). Arrow length indicates 

SAR derived wind speed in m/s and arrow direction 

indicates ECMWF modelled wind direction 

 

Conclusions 
Most of human interaction with the sea occurs in 

coastal regions. Despite the importance of these areas, 

a large amount of coastal ocean-atmosphere 

interactions are understudied. The results from this 

study highlight the importance of understanding how 

coastal topography affects spatial wind variability, and 

in turn wind forcing. The SE wind regime of False Bay 

and the greater Cape Peninsula region is strongly 

influenced by the surrounding topography, with these 

orographic effects influencing other ocean dynamics. 

Surrounding mountain ranges cause areas of wind 

shadow and wind acceleration within False Bay and 

off the Cape Peninsula as a result of vertical 

compression and a capping inversion layer associated 

with the SAA. These wind shadows correspond to 

warmer ocean surface temperatures and higher Chl-a, 

whereas intense SE winds correspond to cooler SST 

and lower Chl-a values. Changes in SST and Chl-a are 

strongly linked to the prevailing wind regime, with 

higher values observed during summer months and SE 

winds, and lower values during winter months and 

NW winds. This study shows the potential to use SAR 

derived wind speeds in synergy with high spatial 

resolution SST and Chl-a data to better understand the 

spatial wind variability and wind forcing within the 

False Bay and greater Cape Peninsula region, as well 

as coastal regions as a whole. 

Figure 4: A time series of A) ERA-interim v-

component wind speeds taken from a location offshore 

of False Bay (-34.5 S, 18.75 E) rotated along a 

northwest-southeast axis are compared to the 

difference between areas of wind shadow and 

upwelling for B) sea surface temperature (SST) in 

degrees Celsius and C) chlorophyll concentrations 

(Chl-a) in mg/m3 for False Bay (solid line) and off the 

Cape Peninsula (dashed line).  A dashed grey vertical 

line indicates where the y-value is 0 and dashed 

horizontal lines indicate the years. 
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The Normalised Difference Vegetative Index (NDVI) is positively correlated to the yield in many crops. In recent 
times, it has been used to gauge the expected yield for crops. In this study, we have investigated the climate variability 
of sugarcane in a selected region in Felixton, Kwazulu-Natal province. The NDVI time series is decomposed to 
identify the seasonal, trend and random series. In order to find the periods and the impact of precipitation and 
temperature on the NDVI, a data adaptive method, ensemble empirical mode decomposition and synchronisation is 
applied. The results show that the seasonal rainfall and temperature variability has an influence on the NDVI. 
However, the rainfall variability has more direct impact. A non-linear regression model to find the effect of variability 
of precipitation, temperature, vapour pressure, cloud cover and soil moisture on the sugarcane growth is proposed.  
 
Keywords: Precipitation, Temperature, Climate Change, Statistical Analysis, Sugarcane, Felixton 
 
Introduction 
The agriculture sector has not been spared from 
precipitation variability and warming climate. Driven 
by the growing concern about climate change impact 
on agricultural sector, there has been a growing 
interest on the subject. From 1990s onwards, there are 
a number of studies that have been carried out which 
mainly focused on the impact of climate variables such 
as air temperature, precipitation and CO2 on the 
sugarcane yield (Jones & Singels, 2014; Linnenluecke 
et al., 2015; Miguez et al., 2018). Many of the studies 
used experimental analyses, agro-ecological models 
and process-based dynamic crop growth models and a 
few used statistical analysis (Kurma & Sharma, 2014;  
Jones & Singels, 2014; Zhao & Li, 2015; 
Linnenluecke et al., 2015). Therefore, there is need to 
carry out more statistical based analysis. Furthermore, 
a number of the statistical methods use yield or 
production as a basis of analysis of the impact of 
climate variability and do not look at the growth phase 
of the sugarcane.  
 
The use of vegetation index to monitor crop 
progression and yield has increased over the years 
since it has been found to be positively correlated to 
yield for crops such as maize, soybean and sugarcane 
(Tarnavsky et al., 2008; Peralta, 2016; Sanches et al., 
2018). One of the most commonly used index is 
Normalised Difference Vegetative Index (NDVI). 
Using this index, the stress on the leaves can be 
diagnosed through spectral responses. The NDVI can 
show nitrogen status and chlorophyll at micro level. 
Therefore, any limiting factors in the environment can 
be identified through the physiological stress in the 
leaves because of the variation in the concentration of 
nutrients (Lisboa et al., 2018).  
 
The warming climate which has resulted in the 
increase of CO2 has been found to have a positive 
correlation on the sugarcane by several studies (Jones 
& Singels, 2014; Zhao & Li, 2015; Linnenluecke et 
al., 2015). However, the variability of precipitation has 
had a negative impact on the growth of sugarcane 

(Kumar & Shamar, 2014). Sunlight, vapour pressure 
and soil moisture have all been found to have a 
significant influence on the plant growth (Zhao & Li, 
2015; Miguez et al., 2018). 
 
In this study, using the NDVI, the impact of climate 
variability on sugarcane of a selected region in 
Felixton, northern KwaZulu-Natal is shown. A data 
adaptive method, Ensemble Empirical Mode 
Decomposition and synchronisation is used to identify 
the variability at different time scales. A multiple non-
linear regression model is proposed to find and predict 
the influence of air temperature, precipitation, vapour 
pressure, soil moisture and sunlight on NDVI.  
 
Data and Method of Analysis 
Study Area 
A sugarcane production region located between -29ºS 
to -28.2ºS and 31.2ºE and 32.2ºE in Felixton, 
KwaZulu-Natal province was selected for the study 
(see Fig. 1). The Felixton area contributes about 10% 
of sugarcane yield in South Africa and has one of the 
largest mills in the country. In 2017/18 season about 
1,7 million tons were crushed at the mill (SASA, 
2019). 

Figure 1: The location of study area in KwaZulu-
Natal Province. 
 
Data 
In this study, monthly observations of precipitation, 
temperature, NDVI, vapour pressure, cloud cover and 
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soil moisture data for the period from 2000 to 2018 
were used. For precipitation the Global Precipitation 
Climatology Project (GPCC) is used (Schneider et al., 
2018). The GPCC, vapour pressure, cloud cover and 
soil moisture data are all freely available online on the 
Royal Netherlands Meteorological Institute (KNMI) 
website (https://climexp.knmi.nl) (Huang et al., 2014). 
The Global Historical Climatology Network version 2 
and the Climate Anomaly Monitoring System (GHCN 
+ CAMS) were used for temperature. The NDVI data 
set MOD13A3 version 6 was extracted from Appears 
Application (Didan, 2015). MOD13A3 version 6 
provides Vegetation Index (VI) values at a per pixel 
basis at 500 meter spatial resolution and is taken every 
16 days. The data set was averaged to find the monthly 
data. 
 
Ensemble Empirical Mode Decomposition 
Ensemble Empirical Mode Decomposition (EMD) is a 
data adaptive time-frequency representation method, 
which does not have a lot of underlying assumptions 
and it only requires that the data must consist of simple 
intrinsic oscillations (Huang et al., 1998). The NDVI 
is decomposed into intrinsic mode functions (IMFs) 
and a residual. The IMFs represents the original data 
at different time scale and the residual shows the 
general trend of the NDVI.  
 
In order to investigate the variability of the NDVI at 
different time scales, the index was decomposed into 
different time scales using ensemble empirical mode 
decomposition. Five IMFs were derived and these 
were synchronised to temperature and precipitation 
and to identify the relationship between the time 
series. 
 
Synchronisation of coupled oscillating systems means 
appearance of certain relations between their phases 
and frequencies (Rosenblum et al., 2001). Here, we 
use this concept in order to reveal the interaction 
between NDVI and the climatic variables precipitation 
and temperature. R package ‘synchrony’ is used which 
measures phase synchrony between quasi-periodic 
times series (Cazelles & Stone, 2003). 
 
Multiple Non-Linear Regression 
Least squares method is used to find the linear and 
non-linear relationship between NDVI as dependent 
variable and independent variables; precipitation, 
temperature, vapour pressure, cloud cover and soil 
moisture. The general model is given by, 
 
             𝑦 = 𝛽0 + ∑

𝑖=0

𝑛

𝛽𝑖𝑓𝑖(𝑥, 𝑡)                          (1) 
 
Where y is the dependent variable NDVI,  is error 
term,  is a coefficient and   is the independent climatic 
variables (Miguez et al., 2018). 
 
Results and Discussion 
Statistical Characteristics of the NDVI 
Using the R package ‘Forecast’ a simple additive 
statistical model was derived from the NDVI time 
series which is given by: 
 

                             𝑦𝑡 = 𝑚𝑡 + 𝑠𝑡 + 𝑒𝑡                 (2) 
 
where t=time, yt is the observed time series, mt is the 
trend series, st is the seasonal time series and et is the 
error term. The results of the decomposition using R-
package ‘Forecast’ is plotted in Fig. 2 below. The 
trend plot shows a dip in the NDVI around 2004 and 
2015. The published results from Department of 
Agriculture, Fisheries and Forestry (DFF) shows that 
the yield for 2015/2016 dropped to 14,861 thousand 
tons from 17,756 thousand tons in 2014/2015 season 
(DAFF, 2016). This was mainly attributed to the 
drought that was experienced in South Africa (SASA, 
2019). 
 
Multi-scale Variability 
Time series that are phase synchronised or locked 
exhibit a modal distribution with a prominent peak at 
a given phase difference, whereas unrelated times 
series are characterized by a uniform or diffuse 
distribution. 
 

Figure 2. Plot of the decomposition of the NDVI time 
series into trend, random and seasonal series. 
 
The results show that there is phase locking for IMF2 
for precipitation since there is a clear peak (Fig. 3). 
IMF2 has a period of about 12 months which 
represents the annual period. However, there is weak 
coupling for all other IMFs.  This shows that seasonal 
precipitation variability has a direct impact on the 
NDVI.  This agrees with studies by Kumar & Shamar 
(2014) which showed the direct impact of rainfall 
variability.  Fig. 4 reveals that temperature has an 
impact on the seasonal variability of NDVI, since a 
peak is also identified on the IMF2.  
 
Impact of Environmental Variability 
Multi non-linear regression was used to find the model 
of the environmental impact on the sugarcane growth. 
The percentage cloud cover was used to represent the 
sunlight. The model found is expressed as  
            

𝑦 = 0.0826450 + 0.1790437𝑥1 − 
0.0718855𝑥1

2 + 0.0038270𝑥2
2 + 

0.0225784𝑥3 − 0.0063429𝑥4 + 
1.4087915𝑥5 

where x1 is the precipitation, x2 is temperature, x3 is 
vapour pressure, x4 is percentage cloud cover and x5 is 

https://climexp.knmi.nl/
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soil moisture. The coefficients for vapour pressure, 
cloud cover and soil moisture were all found to be 
significant. The Pearson Coefficient of correlation for 
the model is . In order to evaluate the model a series of 
histogram are plotted and shown in Fig. 5. 

Figure 3. Histogram plot of synchronisation of NDVI 
and precipitation. The graphs show that there is clear 
peak for only IMF2 (second graph) which shows that 
there is phase locking. 

 
Figure 4. Histogram plot of synchronisation of NDVI 
and temperature. The graphs show a clear peak for 
only IMF2 (second graph) which shows that there is 
phase locking. 
  
Residuals are values found from the difference 
between observed and expected values from the 
model. The points on the Residuals Vs Fitted plot are 
spread out and this shows that as a good model.  The 
Normal Q-Q plot shows that the residuals are normally 
distributed, which is one of the assumptions that has to 
be met for a good model. The Scale-location plot is 
showing that the residuals are more spread out.  
 
The Residuals vs Leverage plot helps to identify 
influential data points in the model. Points that are 
outside the dashed red Cook’s distance line are 
influential on the model. The plot does not show any 

influential cases. Therefore, the model found to predict 
the plant growth using the cited external 
environmental factors.  
 
The model provides further proof of the impact of 
climate variability as suggested by Zhao & Li (2015) 
which highlighted the direct influence of the 
environmental factors modelled here. 

Figure 5. Residuals plots to evaluate the model. The 
plots are Residual vs Fitted (top left), QQ plot (top 
right), Scale-Location (bottom left) and Residuals vs 
Leverage (bottom right). 
  
Conclusion 
The NDVI was used to show the variability of the 
sugarcane at different time scales. This was done 
through decomposing the NDVI into different time 
scales and the resulted decomposed time series 
synchronised with precipitation and temperature. The 
variability of rainfall has more impact on the NDVI 
than temperature. A model which encompasses 
precipitation, temperature, vapour pressure, cloud 
cover and soil moisture was proposed.  
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10. WEATHER FORECASTING AND CLIMATE MODELLING 
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Numerical Weather Prediction models have for decades been used for the simulation of atmospheric variables, and 

frequently forms part of meteorological research. The accuracy of meteorological fields produced by these models are 

very much dependent on the choice of physical parameterization scheme. Any errors in simulations of meteorological 

fields will be passed on to subsequent processes (e.g. air quality models) and will have an effect on its outputs. Therefore, 

the realistic simulation of meteorological parameters is of utmost importance. The aim of the presented research is to 

evaluate the performance of Planetary Boundary Layer (PBL) schemes contained in the non-hydrostatic Advanced 

Research Weather Research and Forecasting (WRF-ARW) model. Four well-known and frequently used PBL schemes 

were investigated by conducting sensitivity experiments during June 2016 over the South African Highveld region. The 

simulations resulting from the different schemes were compared against each other, and statistically evaluated, by making 

use of observational meteorological data at five sites. Considering the performance indicators used, the MYNN schemes 

was identified as the best preforming in terms of temperature simulation. The MYNN scheme produced the smallest 

temperature biases at all but one site. Wind speed and direction were very well simulated by all schemes. Average wind 

speed biases for the period were small (<1ms-1), and performance indicator results were similar between model setup. 

There is no clearly best-performing scheme in terms of wind speed and direction simulation, but MYJ produced slightly 

better results. Based primarily on performance when simulating temperature and wind speed, the two local schemes, MYJ 

and MYNN, are suggested as the preferred PBL schemes for the Highveld region during austral winter. Results from this 

study, and future research, will contribute to the establishment of a preferred PBL scheme in the WRF-ARW model, for 

use in the South African Highveld. 

 

Keywords: South Africa, WRF-ARW model, PBL schemes, meteorological simulations, model evaluation   

 
Introduction 
Meteorological models have for decades been used for 
the simulation of atmospheric variables (Ritter et al., 
2013), and frequently forms part of meteorological 
research. Numerical Weather Prediction (NWP) 
models are sensitive to a number of parameters, and 
uncertainties in the models can be attributed to 
physical parameterizations of atmospheric and surface 
processes, properties of the domain, and vertical and 
horizontal resolutions (Crétat et al. 2011; 2012; Crétat 
and Pohl, 2012).  
 
Any errors in simulations of meteorological fields will 
be passed on subsequent processes (e.g. air quality 
models) and will have an effect on its outputs. 
Therefore, the accurate simulation of meteorological 
parameters, which are known to have an influence on 
pollution dispersion and chemistry, is of utmost 
importance (Gilliam et al., 2006). Planetary Boundary 
Layer (PBL) parameterization schemes are key when 
attempting to successfully simulate the boundary 
layer, and consequently, near surface air pollution 
concentrations levels. PBL schemes parameterize 
unresolved turbulent vertical fluxes of heat, 
momentum, and constituents such as moisture within 
the PBL and are responsible for the turbulent mixing 

throughout the atmosphere (Hu et al., 2010; Crétat et 
al., 2012).  
 
In the presented research, we aim to evaluate the 
performance of PBL schemes in the Advanced 
Research Weather research and forecasting (WRF-
ARW) model (Skamarock et al., 2008). Frequently 
used PBL schemes are investigated by conducting 
sensitivity experiments during a month in austral 
winter in the heavily polluted Highveld region of SA. 
Simulations are compared against each other, and 
evaluated by making use of observational (OBS) 
meteorological data.  
 
Since accurately simulating meteorological processes, 
and subsequent pollution events, is of utmost 
importance in a region where South African National 
Ambient Air Quality  
 
Standards (SA NAAQIS) are regularly exceeded, the 
results from this study contribute to the establishment 
of a preferred PBL scheme for use in South African 
Highveld region. 
 
PBL and Surface Layer Schemes (SLS’s) 

mailto:anzel.delange@up.ac.za
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The choice of PBL scheme does not only effect air 
quality related parameters like mixing height, but also 
has significant influence on other meteorological 
parameters (e.g. wind, temperature). Since different 
parameterization schemes in models affect the 
precision of simulated PBL height, and other 
meteorological parameters, it is necessary to validate 
these simulations with measurements (Korhonen et al. 
2014). 
 
The PBL schemes, their associated Surface Layer 
Schemes (SLS’s), closure type, method for calculating 

PBL height, as well as threshold values, are listed in 
Table 1. These PBL schemes are popular 
internationally; with the YSU scheme being the most 
widely used, and the MYJ scheme following thereafter 
(Banks et al., 2016). However, MYNN2.5 and ACM2 
are also popular. We consider two local closure 
schemes (MYJ and MYNN2.5) whereby a given point 
is only affected by vertical levels directly adjacent 
thereto, as well as two non-local schemes (YSU and 
ACM2), where multiple vertical layers can effect 
variables at a given point (Cohen et al. 2015).

 
Table 1. WRF-ARW PBL schemes, along with their associated SLS’s, method of PBL height estimation and threshold, 
evaluated in this study (Adapted from Banks et al., 2016). 

PBL 
scheme 

Reference Associated 
SLS 

Closur
e 

PBL height  Threshold 

YSU Hong et al., 2006 MM5 
similarity 

Non-
local 

Rib calculated from 
surface 

0.00 (unstable) & 0.25 
(stable) 

MYJ Janjic, 1994 Eta 
similarity 

Local Total Kinetic Energy 
(TKE) method 

 

MYNN2.5 Nakanishi and 
Niino, 2006 

MYNN Local Total Kinetic Energy 
(TKE) method 

 

ACM2 Pleim, 2007 MM5 
similarity 

Non-
local 

Rib above neutral 
buoyancy level 

0.25 (unstable & stable) 

 
Model description and experimental design 
a. Study region and case studies 
The Highveld region (eastern Gauteng and western 
Mpumalanga) of SA experiences elevated pollution 
levels due to a variety of industrial and domestic 
emission sources. 
 

Figure 1. Domains for WRF-ARW model simulations 
over SA (D1=Domain 1, D2=Domain 2, D3=Domain 
3). 
 
Air pollutant levels in this region has led to the 
declaration of the Highveld Priority Area (HPA) 
(DEAT, 2007). Winters (JJA) in the HPA are 
characterized by clear skies, and cold and dry 
conditions (Lourens et al. 2011). Winters also exhibit 
stable atmospheric conditions; exacerbated by a semi-
permanent high-pressure system over the region 
(Tyson and Preston-Whyte, 2000). Thus, the HPA 

often experiences poor atmospheric dispersion leading 
to the stagnation and accumulation of pollutants.  
 
b. Model and domain 
The WRF-ARW model requires two sets of external 
data in order to be successfully run for a real-world 
case. Static geographical land use and surface data 
(e.g. United  States Geological Survey (USGS) 
topography) ranging from 10-min to 30-second 
resolutions for the 18 km, 6 km and 2km domains (Fig. 
1) were used for surface parameters. Global model 
forecast data was used for initialization and boundary 
conditions; specifically, 6-hourly data at a 0.2° x 0.2° 
grid resolution from National Centers for 
Environmental Prediction (NCEP) Climate Forecast 
System Version 2 (CFSv2) (Saha et al., 2011). 
 
Month-long WRF-ARW simulations, at a 1-hour 
temporal resolution, were used for model validation; 
this excludes the 15-day period allotted for model 
spin-up. The WRF-ARW model has multiple physics 
options, which require a choice of parameterization 
scheme. Besides the choice of PBL and SLS’s, the 
simulations in this research were configured as 
follows; WRF single-moment six-class (WSM6) 
scheme for microphysics (Hong and Lim, 2004); 
Kain–Fritsch cumulus parameterization scheme 
(Kain, 2004); Rapid  
 
Radiative Transfer Model scheme for longwave 
radiation (RRTMG-LW) and for shortwave radiation 
(RRTMG-SW) (Iacono et al., 2008), and the 4-layer 
NOAH unified land surface model (Tewari et al., 
2004). 
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Figure 2. Location of the five sites chosen for this 
study in D3. 
 
c. Meteorological observational data 
Meteorological measurements originating from South 
African Weather Service (SAWS) stations were 
obtained, and data Quality Control (QC) applied. The 
five stations (Fig. 2) include three weather offices; 
Irene Ermelo, Johannesburg International Airport 
(JHB Int.), and two automated weather stations; 
Vereeniging and Witbank. Data availability for the 
period is more than 95% for all variables of concern; 
except wind speed and direction at Vereeniging 
(17.5%) which was not used in this analysis. 
 
Table 2. Description and perfect score for the chosen 
statistical methods used to evaluate WRF-ARW model 
performance 

Performance 

indicator 

Description Perfect 

Score 

Pearson product-

moment correlation 

coefficient (R) 

Measure the degree of 

relationship between the 

observed and simulated 
data 

1 

Bias Measures the sign and 

magnitude of the error of 
the simulations 

0 

Index of Agreement 

(IOA) 

Standardized measure of 

degree of model 
prediction error 

1 

Mean Absolute 

Percentage Error 

(MAPE) 

Measures the error of a 

simulation as a 
percentage (%) 

0 

 
d. Verification methods 
Model evaluation in this study is focussed on the 
simulated wind speed, wind direction and temperature. 
Visual and statistical methods are used to evaluate the 
performance of the WRF-ARW model with different 
PBL scheme setups. Statistics used in the verification 
of the simulation results are summarized in Table 2. 
 
Results and Discussion 
a. Temperature 
A summary of performance indicator results for 
temperature are presented in Table 3. The 
relationships between observed and simulated 
temperatures are strong (R>0.88) for all schemes at all 
sites. The weakest correlations are found at 

Vereeniging, this site also produced the largest bias for 
the period (2.47 °C, 3.38 °C, 1.74 °C and 2.50 °C for 
setup 1 to 4, respectively) as well as most inaccurate 
simulations (MAPE>100%).  
 
In terms of correlation strength, IOA and MAPE, the 
site where simulations performed best was Irene. JHB 
Int. performed very well when considering bias, with 
all simulations producing average biases of less than 
1°C for the period considered. Here we notice high 
agreement between observed and simulated 
temperature (IOA>0.95), and relatively low MAPE. 
Considering the data presented in Table 3, all schemes 
produce strong correlations and IOA. MAPE and 
biases are also quite similar between schemes, but 
MYNN does out-perform the other schemes with the 
smallest absolute biases and MAPE scores across the 
sites considered. 
 
Table 3. Summary of performance indicator results for 
temperature simulated with the WRF-ARW model for 
different setups. 

Station Performance 

indicator 

YSU 

(1) 

MYJ 

(2) 

MYNN 

(3) 

ACM 

(4) 

  R 0.95 0.95 0.93 0.95 

Ermelo Bias 1.01 1.22 0.44 1.05 

  IOA 0.96 0.96 0.96 0.96 

  MAPE 18.69 21.23 18.53 18.99 

  R 0.96 0.95 0.94 0.96 

Irene Bias -1.03 -0.15 -1.79 -1.05 

  IOA 0.97 0.97 0.93 0.97 

  MAPE 12.11 9.42 16.26 12.12 

  R 0.92 0.93 0.91 0.92 

JHB Int. Bias -0.12 0.64 -0.56 -0.06 

  IOA 0.96 0.96 0.95 0.96 

  MAPE 13.04 13.42 14.88 13.33 

  R 0.93 0.88 0.92 0.93 

Vereeniging Bias 2.47 3.38 1.74 2.50 

  IOA 0.91 0.85 0.93 0.91 

  MAPE 129.32 185.79 103.72 129.03 

  R 0.94 0.92 0.91 0.94 

Witbank Bias 0.95 1.58 0.26 0.98 

  IOA 0.96 0.93 0.95 0.96 

  MAPE 15.58 21.47 17.00 15.89 

 
Average bias for the period is low for all sites except 
Vereeniging, where hourly temperature biases were 
high (greater than 2°C in most cases). In Fig. 3, 
average hourly temperature bias is plotted for one of 
the best-performing sites, JHB Int. It is clear that 
temperature bias is affected by the diurnal cycle. Most 
schemes tended to under-predict temperature during 
the night up to noon (approximately 12:00 SAST), and 
over-predicted temperatures as temperatures were 
cooling down (13:00 to 20:00 SAST). The one scheme 
that deviates from this patterns is MYJ.  
 
This pattern of over and under-prediction is present at 
all sites to differing degrees, except at Ermelo and 
Vereeniging. Here, on average, temperatures are over-
predicted by all model setups for most of the day. 
Considering absolute biases across all sites, MYNN is 
the best performing PBL scheme in terms of 
temperature simulation. 
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Figure 3. Hourly average temperature bias (Modelled 
– Observed temperature) at JHB Int. for all 
experimental setups.  
 
b. Wind speed and direction 
A summary of performance indicator results for wind 
speed is presented in Table 4. The relationships 
between observed and simulated wind speeds are 
relatively strong (R>0.65) for all schemes at all sites. 
Average wind speed biases are all less than +/- 1 ms-1 

and mostly negative, except for Witbank where all 
model setups produced positive biases (meaning that 
the wind speeds were over-estimated by the model).  
 
MAPE is less than 45% throughout model setups and 
sites. MAPE is low at Ermelo, indicating that the 
absolute percentage errors of the simulation are 
relatively low (< 30%). Considering the data presented 
in Table 4, there is no clearly best performing scheme 
in terms of wind speed simulations. In general, all 
schemes produce strong correlations, small biases and 
high IOA. The only performance indicator which truly 
differentiates between these schemes is MAPE, here 
MYJ shows slightly better results than the other 
schemes. 
 
Table 4. Summary of performance indicator results for 
wind speed simulated with the WRF-ARW model for 
different setups.  
Station Performance 

indicator 

YSU 

(1) 

MYJ 

(2) 

MYNN 

(3) 

ACM 

(4) 

  R 0.72 0.73 0.75 0.72 

Ermelo Bias -0.32 -0.62 -0.52 -0.28 

  IOA 0.84 0.82 0.84 0.84 

  MAPE 29.70 29.64 27.92 29.49 

  R 0.72 0.71 0.68 0.69 

Irene Bias -0.33 0.15 -0.36 -0.21 

  IOA 0.82 0.83 0.80 0.81 

  MAPE 40.10 36.64 40.35 41.47 

  R 0.67 0.67 0.66 0.65 

JHB Int. Bias -0.23 -0.45 -0.30 -0.20 

  IOA 0.81 0.78 0.79 0.80 

  MAPE 34.22 32.46 35.16 35.32 

  R 0.73 0.73 0.74 0.74 

Witbank Bias 0.38 0.21 0.40 0.33 

  IOA 0.84 0.85 0.85 0.84 

  MAPE 42.13 35.41 38.83 40.25 

 
Wind roses for JHB Int. are plotted in Fig. 4. Wind 
roses assist in the identification of frequently 
occurring wind directions and speeds for each model 
setup. The dominant observed and simulated wind 
direction at JHB Int. is Westerly to North-Westerly 
(270° to 315°).  

 
The occurrence of the dominant wind direction is very 
well simulated by all schemes at this site. The pattern 
of wind speed distribution is also well simulated by 
WRF-ARW. The only disagreement is the slight 
under-simulation of 2 to 4 ms-1 and over-simulation of 
0.5 to 2 ms-1 winds.  
 
Ermelo, Irene, and Witbank (not shown) also show 
good agreement between observed and simulated wind 
speed and directions. Hourly average biases were 
acceptable for this study (<1 ms-1) for the majority of 
hours during the day as shown in Fig. 5 for Witbank. 
 

Figure 4. Wind roses at JHB Int. for the period. 
 
Conclusions 
Since experiment 1 to 4 were all configured in the 
same way, any variances in meteorological output can 
be attributed to the PBL and SLS’s alone. The WRF-
ARW model, with all tested configurations, 
reproduced the variation in temperature well for the 
chosen HPA sites.  
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Figure 5. Hourly average wind speed bias (Modelled–
Observed wind speed) at Witbank for all experimental 
setups.  
 
Correlations between simulated and observed 
temperatures ranged between R=0.88 and 0.96, and 
indicated strong relationships. However, hourly biases 
are significant and largely affected by the diurnal 
cycle. When considering performance indicator 
results, MYNN was identified as the best performing 
scheme.  
 
Wind speed and direction were very well simulated by 
all schemes. Hourly biases in wind speed were on 
average less than 1ms-1, and performance indicator 
results were very similar between model setups. Here, 
the scheme presenting slightly better results than the 
others, was MYJ.  
 
The two local schemes (Table 1), MYJ and MYNN 
which uses the TKE method, are suggested as the 
preferred PBL schemes for the Highveld region during 
austral winter. These schemes likely represent stable 
conditions better as the coupling in the vertical is not 
as enhanced as in the summer. 
 
Further research includes applying the presented 
method to a period in austral summer (November 
2016), and a comparison of simulated upper-air profile 
data and PBL heights with atmospheric profiles, and 
PBL heights at Irene. 
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The South African Weather Service (SAWS) is implementing a hydrological model to be used for various hydrological 

research activities. The Mesoscale Hydrological Model (mHM) is an open-source grid-based model that has been tested 

and applied in various hydrological research activities. This contribution aims to present initial results of the mHM over 

two secondary catchments in the Vaal and Inkomati drainage regions. The Nash-Sutcliffe Efficiency (NSE) scores were 

computed and analysed for various streamflow points throughout each catchment. Initial model setups are being robust in 

estimating streamflow in the Inkomati catchment as opposed to the Vaal catchment. For the Inkomati catchment ∼64% 

stations showed positive NSE scores meaning the model is a better estimate for streamflow than simply using the mean of 

the observed data at those points. In contrast the Vaal catchment showed worse results with only ∼6% stations exhibiting 

a positive NSE score, albeit very small. This shows a clear discrepancy in the models ability to accurately model the 

streamflow of the two different catchments. The differences in model performance across the two catchments could be 

attributed to the inherent differences in e.g., the quality of input data sets and catchment hydrological processes. As a result, 

much more work and research is needed in understanding the various input data which feeds the model. This study shows 

the initial work towards an operational hydrological model that can firstly forecast streamflow and secondly monitor 

drought conditions throughout South Africa.  

 

Keywords: Mesoscale Hydrological Model, streamflow forecast 

 
Introduction 
The South African Weather Service (SAWS) is a 
Meteorological Authority organization that is driven 
by three main pillars, namely the science, services and 
technology. The organization is tasked with providing 
weather and climate services to all the South African 
citizens, thereby providing solutions related to the top 
risks associated with extreme weather, natural 
disasters and climate action (SAWS Strategic Plan, 
2019/2020-2023/24).  
 
In order to effectively provide services to the water 
sector, SAWS is joining most of the national 
meteorological and hydrological services in terms of 
implementing and operationalising a hydrological 
modelling system. Now-a-days the requirements and 
demands for hydrological models have significantly 
increased due to the recurring natural hazards that 
result in extreme damages to property and 
infrastructure, including the loss of lives. This has led 
to significant improvements in the development of 
these models, e.g. from simple conceptual 
hydrological models (Burnash et al., 1973; Bergstrom, 
1995) to more complex and spatially distributed 
models (Wood et al., 1997; Schulla and Jasper, 2007). 
These improvements also require an increase in 
computational power.  
 
The SAWS is in the process of implementing the 
Mesoscale Hydrological Model (mHM) 
(www.ufz.de/mhm) system for hydrological research 
and applications. SAWS plans on achieving the first 
operational streamflow forecasts by the end of March 

2020 for the preliminary catchments selected in this 
study. 
 
The mHM is a spatially distributed open-source model 
developed by the Helmholtz Centre for Environmental 
Research – UFZ in Germany. This grid-based 
conceptual model has been tested in more than 30 
basins in Germany, see for example, Samaniego et al. 
(2010). Other studies that have utilized the mHM for 
various hydrological research include Samaniego et al. 
(2011), Kumar et al. (2013), Thober et al. (2015), 
Samaniego et al. (2013), Baroni et al. (2017), 
Pechlivanidis et al. (2017), Visser-Quinn et al. (2019) 
and many others. SAWS decided on this model 
because of the robustness of the model in handling any 
time period and any spatial resolution. Since it is an 
open-source model there are little limitations in which 
input data can be ingested into the model as long as it 
complies with the temporal and/or spatial resolution of 
the catchment. At SAWS, the mHM will be used for, 
but not limited to, drought monitoring and prediction, 
streamflow and runoff forecasts. 
 
Study area  
Two catchments were identified for the first model 
implementation and evaluation of the first results. The 
two secondary catchments that were selected are: the 
C1 of the upper Vaal drainage region and X2 in the 
Inkomati drainage region, see Fig. 1. The C1 
secondary catchment was identified because of the 
socio-economic activities in the Vaal region. For 
instance, there are numerous dams, mining, 
agricultural and industrial activities in the region 
which withdraws or deposits flow (depending on the 

mailto:jaco.dewit@weathersa.co.za
http://www.ufz.de/mhm
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activities) from the rivers and are likely to alter the 
hydrological flow directly/indirectly.  On the other 
hand, Inkomati drainage region exhibits more natural 
flow characteristics and it is less influenced by dams 
and other activities.  
 

Figure 1. Study area for mHM testing  
 
Data and Methodology 
The mHM is an open-source grid-based hydrological 
model which is based on accepted hydrological 
conceptualizations (Kumar et al., 2013). The model is 
able to reproduce as accurately as possible not only 
observed discharge hydrographs at any point within a 
basin but also the distribution of soil moisture among 
other state variables and fluxes (Kumar et al., 2013). 
For the purpose of this study only discharge or 
streamflow is of interest out of the model outputs. 
There are no spatial or temporal resolution limitations 
to the model and as long as the resolutions are uniform 
for all the datasets the model can be set up. The model 
is driven by daily or hourly precipitation and 
temperature fields together with various 
morphological data (elevations, land cover, soil types 
and geological types) describing the local 
environment. The mHM model was set-up using the 
input data as described in Table 1 in the processed 
dataset column. The table also describes briefly the 
processing which had to be done on the original 
datasets to obtain the desired uniform spatial 
resolution. The processing involves re-projecting and 
resampling the data to a new spatial resolution.  
 
The time period of historical meteorological 
information is defined by the period of historical 
streamflow observations. The C1 catchment has 
limited streamflow data in that area and thus limited 
the time period. In particular, C1 has 16 streamflow 
stations which have data from 1997 to 2018 (21 years). 
Thus for the C1 catchment the input meteorological 
data also had to reflect the same time period of 1997 
to 2018. On the other hand, X2 catchment has a much 
larger streamflow dataset and has 11 streamflow 
stations with data from 1979 to 2018 (40 years).  
Similarly for the X2 catchment the meteorological 
data was also adapted to the time period of 1979 to 
2018. The model uses these two time periods for each 
catchment respectively to compare the model 
estimated streamflow with the observed. Which is then 
used to optimise and calibrate a parameterization set 
which most accurately describe each catchment. The 

streamflow stations were identified and picked as such 
in order to obtain as many streamflow points as 
possible with at least 20 years’ worth of data. Both 
catchments met the minimum model requirement of 20 
years’ worth of input data for the purpose of 
optimizing and parameterizing a catchment. 
 
Table 1. Summary of original and processed datasets 
as per the model requirement: Orig. Res. = Original 
Resolution; Proc. Res. = Processed Resolution; prec. 
= precipitation; temp. = temperature; NLCM = 
National Land Cover Map; HWSD = Harmonized 
World Soil Database 

Original 

dataset 
Orig. Res.  Processed dataset Proc. Res.  

Hourly ERA5 
reanalysis 

prec. 

0.250 Daily accumulated 

prec 
0.250 

Hourly ERA5 

reanalysis 2m 

temp.  

0.250 

Daily minimum, 

maximum and 

average temp 

0.250 

Global Multi-

resolution 
Terrain 

Elevation Data 

(GMTED) 
2010 

7.5 arc-

second 

  
(about 

0.00210) 

Hydrological 

reconditioned DEM; 
fill DEM; slope; 

aspect; flow 

direction; flow 
accumulation 

0.00250 

 HWSD V1.2 1 km 

Soil classes for 

catchments (% clay, 
% sand, bulk 

density, top soil and 

sub soil layers) 

0.00250 

DEA SA 
NLCM 1990 

and 2013/14 – 

35 classes 

30 m 

Reclassified land 

cover types as 
needed by the model 

0.00250 

DWAF 
streamflow 

gauge 

locations 

No 
original, 

data had to 

be created 

Streamflow points 

in raster format 

fitted on top of the 
flow accumulation 

lines 

0.00250 

Watershed of 

the catchment 

No 

original, 

data had to 
be created 

Computed the 
watershed area 

using the outflow 

streamflow point 
and the flow 

direction data 

0.00250 

 

Initially by default the mHM uses a default global 
parameterization set for every catchment which has 
been obtained by the developers of the model through 
global setups of the model. The model then estimates 
streamflow based on the input data and default global 
parameterization. After that the model compares the 
estimated streamflow with the historically observed 
streamflow. In order to fit model estimated streamflow 
to the observed data, the mHM and the parameter sets 
have to be recalibrated and optimized for each 
catchment. These calibrated and optimized 
parameterization sets result in calibrated and 
optimized streamflow variables for that catchment 
which then serve as the basis for evaluation of each 
catchment. 
 
The predictive power of a hydrological model is 
mainly described by two efficiency coefficients 
namely the Nash-Sutcliffe efficiency coefficient 
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(NSE) and the Kling-Gupta efficiency coefficient 
(KGE). The NSE is the most popular for estimating the 
forecasting capabilities of a hydrological model 
(Kumar et al., 2013). The NSE is the main interest of 
this study and will serve as the main measure of how 
well the model can estimate streamflow at various 
points using all the morphological and meteorological 
data provided as inputs. The formula for NSE is 
described as per Eq. 1 
 

 𝑁𝑆𝐸 = 1 − 
∑ (𝑄𝑚

𝑡𝑇
𝑡=1 −𝑄𝑜

𝑡)²

∑ (𝑄𝑜
𝑡𝑇

𝑡=1 −𝑄𝑜̅̅ ̅̅ )²
  Eq.1 

 

where is the mean observed streamflow,  is the 
modelled streamflow and  corresponds to the observed 
streamflow at time t. The NSE values can range from 
-∞ to 1, with NSE = 1 corresponding to a perfect match 
of modelled streamflow to the observed streamflow. 
An efficiency of 0 indicates that the model estimates 
are equal to the mean of the observed streamflow. It is 
suggested that threshold values of NSE >= 0.5 
indicates sufficient model estimation quality.  
 

There are four main optimization methods available 
and numerous objective functions which are 
implemented in the model. The Dynamically 
Dimensioned Search (DDS) optimization routine or 
method was used because DDS is known to improve 
the objective within a small number of iterations 
(Kumar et al., 2013). The other optimization functions 
are the Monte Carlo Markov Chain, simulated 
annealing and shuffled complex evolution. The 
objective function implemented was the 
“0.5*(NSE+lnNSE)” function which weighs both 
NSE and lnNSE by 50%. This function roughly fits 
high and low flows and describes the basic mean or 
median flow conditions. 
 

Ideally the more iterations possible the better the 
optimization results for a catchment, but that also 
increases computational efforts. Both catchments were 
calibrated and optimized through 1000 iterations with 
the settings described above to keep consistency. The 
results were compared and analysed. 
 
Results 
The NSE scores which have been obtained by using 
the same input datasets and optimization method for 
the two different catchments C1 and X2 are shown in 
Table 2 and Table 3 respectively. It can be noted from 
Table 2 that most of the stations in catchment C1 
exhibit negative NSE scores. The only exception is 
station 2 which has a very small positive NSE score of 
0.02. As described in the methodology, an efficiency 
score of 0 (NSE = 0) indicate that the model estimates 
are as accurate as the mean of the observed data. This 
suggests that for station 2 the model estimates are as 
accurate as the mean of the observed data. All the other 
station locations show negative NSE scores suggesting 
that the model estimate is a worse predictor than 
simply using the mean of the observed streamflow. 
Stations 14, 15 and 16 show very small negative NSE 
scores which can also be interpreted as close or similar 
to the mean. This gives us an indication that the model 
is not accurate in estimating the real flow in this area. 

 

Table 2. Catchment C1 station NSE scores. 
ID Station Name Lat Lon NSE 

1 C1H002 Sterkfontein 29.2 -27.2 -31.4 

2 C1H004 Branddrift 29.0 -26.6 0.02 

3 C1H005 Welbedacht 29.3 -26.9 -72.5 

4 C1H006 Rietvley 29.5 -26.8 -7.7 

5 C1H007 Goedgeluk 29.7 -26.8 -3.8 

6 C1H008 Elandslaagte 28.9 -26.9 -72.2 

7 C1H012 Nooitgedacht 28.8 -27 -7.1 

8 C1H015 Sterkfontein 29.2 -27.2 -12.5 

9 C1H017 Villiers  28.6 -27 -23.1 

10 C1H019 Grootdraai 29.3 -26.9 -2.4 

11 C1H020 Grootdraai 29.2 -26.9 -28.2 

12 C1H027 Tweefontein 29.8 -26.8 -31.3 

13 C1H030 Wolwfontein 28.7 -27 -22.9 

14 C1H033 Secunda 29.2 -26.5 -0.03 

15 C1H041 Evander 29.1 -26.5 -0.05 

16 C1H042 Embalenhle 29.1 -26.6 -0.03 

 

The results from catchment X2, which are shown in 
Table 3, indicate more positive NSE scores than 
negative. The catchment X2 produced 7 positive NSE 
scores, which is more than half of the station locations. 
The negative scores are also very small however, 
much smaller than that compared with catchment C1. 
Four of the station locations depict NSE scores larger 
than 0.1 which gives the indication that the model 
estimates are becoming better than the mean of the 
observations. One significant result is station 5 which 
is at the 0.5 NSE threshold. These results indicate that 
the model is much better in estimating streamflow for 
X2 than it is for C1, given the same input datasets. 
 
Table 3. Catchment X2 station NSE scores. 

ID Station Name Lat Lon NSE 

1 X2H016 Tenbosch  -25.4 31.9 0.1 

2 X2H006 Karino -25.5 31.1 -0.01 

3 X2H013 Montrose -25.4 30.7 -0.1 

4 X2H005 Boschrand -25.4 30.9 0.04 

5 X2H014 Sudwalaskraal -25.4 30.7 0.5 

6 X2H015 Lindenau -25.5 30.7 -0.1 

7 X2H012 Geluk -25.7 30.3 0.01 

8 X2H024 Glenthorpe -25.7 30.8 -0.2 

9 X2H010 Bellevue -25.6 30.9 0.2 

10 X2H031 Bornmans  -25.7 30.9 0.2 

11 X2H008 Sassenheim -25.8 30.9 0.1 

 
These results were obtained using very basic physical 
classifications parameters like elevation, land use, soil 
and geomorphology for South Africa. Improving and 
properly classifying the various physical 
classifications would improve the models ability to 
estimate streamflow over South Africa. Running the 
optimization routines for a much larger set of 
iterations would also improve the parameterization 
and calibration sets the model uses for each catchment. 
This however will take much more time and 
computational efforts. All of these ideas will form part 
of future work towards improving and 
operationalizing the mHM model. 
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Conclusion 
The X2 catchment showed good results with 7 out of 
11 stations resulting in positive NSE scores. Four of 
those stations exhibit more significant NSE scores. In 
contrast, the C1 catchment showed mostly negative 
NSE scores with only 1 very slightly positive score. 
The results which were obtained using a very basic 
optimization and calibration methodology and using 
the same input datasets indicate that the mHM model 
is better in estimating streamflow for X2 than it is for 
C1. This also gives an indication that the mHM model 
is much better in estimating streamflow for a 
catchment which exhibits more natural flow 
characteristics as compared to one which is more 
influenced by human or socio-economic activities. 
These results demonstrate the very basic capabilities 
of the mHM model as well as the initial stages towards 
building an operational hydrological forecasting and 
drought monitoring model. Much more work is needed 
in many aspects of the model implementation in a bid 
to accurately set up catchments throughout South 
Africa. 
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The subseasonal deterministic prediction skill of atmospheric circulation relevant to the southern African region is 

assessed by utilizing daily reforecasts of the NCEP CFSv2 model. The predictive skill is assessed over the westerly 

and easterly wind regime regions respectively. Over the westerly wind regime region, skill in predicting weekly mean 

circulation is the highest during the summer months, whereas over the easterly wind regime region, the lowest skill is 

apparent towards mid-summer. 
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Introduction 

Weather and climate predictions on the subseasonal 

timescale have the potential to serve decision making 

in sectors that are of economic and societal 

importance. Over southern Africa, the agricultural 

sector can in particular benefit from useable 

subseasonal predictions, as the time scale of some 

critical operational decisions that need to be made falls 

within this time scale. Disaster management is another 

sector that can benefit from subseasonal forecasts.  

 

Subseasonal weather prediction is relatively new and 

an almost unexplored field for the southern African 

region (Fig. 1). In this study, the predictability of low-

level atmospheric circulation that affect the weather 

and climate of southern Africa is assessed. The 

weather and climate over southern Africa are 

influenced by weather systems embedded in both the 

easterly (e.g. tropical lows, tropical cyclones) -and 

westerly (e.g. cold fronts, ridging high pressure 

systems) wind regimes (e.g. Taljaard 1985; Reason 

and Rouault 2005; Malherbe et al. 2012) as well as by 

interactions across these weather regimes such as 

tropical-temperate troughs (e.g. Hart et al. 2010). The 

approach of assessing the predictive skill over regions 

that are representative of the westerly -and easterly 

wind regimes is followed for comparison purposes of 

the seasonal cycle of predictive skill over these two 

distinct weather regimes. 

 

 

 

 

 

 

 

 

Figure 1. Region 1 and Region 2 is representative of 

the westerly -and easterly wind regime regions 

respectively. 

 

Data and Methodology 

The 850 hPa geopotential height hindcasts with a daily 

start date over the period 1999 to 2010 from the fully 

coupled National Centers for Environmental 

Prediction (NCEP) Climate Forecast System, version 

2 (CFSv2) are used in this study (Saha et al, 2014). 

This hindcast dataset is available from the S2S 

ECMWF data portal and consists of four ensemble 

members per day, initialized at 6-hourly intervals. A 

deterministic assessment is performed here, and the 

ensemble mean is therefore used to calculate a 7-day 

moving average over the full period of 1999 to 2010 

from which the Anomaly Correlation Coefficient 

(ACC) is calculated and presented as a domain 

average for Region 1 and 2 (Fig. 1). To assess the 

seasonal cycle of the predictive skill for these two 

weather regimes, the ACC is presented as monthly 

means. The climatological fields required by the ACC, 

are functions of both the lead time and start date. The 

moving average approach based on daily start dates 

results in forecasts with lead times from 1 out to 21 

days. Here, the assessment of the week 2, 3 and 4 
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forecasts are shown as represented by the 8, 15 and 21 

day lead time forecasts.   

 

Results and Discussion 

The ACC for both the westerly -and easterly wind 

regime regions for week 2, 3 and 4 forecasts is shown 

in Fig. 2. As expected, the ACC is in general higher 

for the easterly wind regime region. In all of the 

months and for all three lead times with the exception 

of the week 3 forecast for January, the ACC is 

exceeding 0.6. In contrast, the ACC never exceeds 0.6 

over the westerly wind regime region. Whereas there 

is a striking deterioration between the week 2 and 

week 3 forecast over the westerly wind regime region, 

this is not the case over the easterly wind regime 

region.   

 

In terms of the seasonal cycle of predictive skill, the 

summer months exhibit higher skill over the westerly 

wind regime region, in particularly for the week 3 and 

4 forecasts. The week 2 forecast shows different 

behaviour during the winter months compared to the 

week 3 and 4 forecasts with no clear fall in the ACC 

for the mid-winter months. Over the easterly wind 

regime region, a seasonal cycle in the skill is also 

evident. Here, the month of January seems to have the 

lowest predictive skill of 850 hPa weekly mean 

circulation, in particularly for the week 3 forecast. In 

general, for this region, predictive skill seem to peak 

during the transitioning seasons. 

 

Conclusions 

The deterministic skill of weekly averaged 850 hPa 

geopotential height circulation has been assessed over 

a period of twelve years (1999 to 2010) by making use 

of CFSv2 hindcasts. The seasonal cycle in skill has 

been explored over two regions that is representative 

of the westerly -and easterly wind regime. The general 

lower skill during the winter months over the westerly 

wind regime region (in particular for the week 3 and 4 

forecasts) is likely due to deeper extratropical cyclones 

during that time of the year, whilst the relatively better 

skill for the week 2 forecast can quite likely be 

attributed to the initial conditions still having an 

influence on the downwind weather systems. The 

general high ACC over the easterly wind regime 

region for the week 2, 3 and 4 forecasts are an 

indication that skill scores where the reference forecast 

is climatology is not the best skill score to be used over 

tropical regions. A skill score where the reference 

forecast is based on persistence might be more useful. 

Even so, the skill as shown by the ACC, provides some 

insight into the seasonal cycle of skill. 

 

. 

 

Figure 2. Monthly mean ACC for Region 1 and 

Region 2 for week 2 (lead time = 8 days), week 3 (lead 

time = 15 days) and week 4 (lead time = 21 days) 850 

hPa geopotential height forecasts. 
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The prediction and forecasting of stratospheric ozone is of great significance as it can explain the dynamics of the 

slowly self-recovering ozone layer in the stratosphere. The data used in this study is a the stratosphere averaged ozone 

measured over three sites operating in the framework of the Southern Hemisphere Additional Ozonesodes (SHADOZ), 

namely Irene (25.88°S, 28.22°E), Nairobi (1.29°S, 36.82°E), and Reunion Island (21.11°S, 55.53°E), by the Sounding 

of the Atmosphere using the Broadband Emission Radiometry (SABER) instrument on-board the Thermosphere-

Ionosphere-Mesosphere Energetic and Dynamics satellite (TIMED). In general, there is a 0.18%/year ozone layer 

recovery at Irene and Reunion Island sites, while Nairobi recorded nearly the same rate, i.e., 0.2%/year ozone layer 

recovery. Three data-driven forecasting models namely the autoregressive integrated (ARIMA) and artificial neural 

networks (ANN) Hybrid, long short-term memory networks (LSTM), and discrete wavelet transform (DWT) denoised 

LSTM (WD-LSTM) were used here. The results indicate that the WD-LSTM deep learning method achieved the best 

forecast, compared to other models.   

 

Keywords: Ozone, forecasting, LSTM, ARIMA, NN  

 

Introduction  

A number of atmospheric chemistry research groups 

have been closely monitoring the slow self-recovery 

of stratospheric ozone for some time. The difficulty 

about this slow recovery is that there is nothing that 

human beings can do as this recovery process depends 

solely on self-recovery of ozone. And also, the 

recovery of the stratospheric ozone layer is strongly 

dependent on the continued decline in the atmospheric 

concentration of ozone-depleting gases such as 

chlorofluorocarbons (CFC) (Rigby et al., 2019). 

However, it is concerning that a recent paper by Rigby 

et al., (2019) has reported that the recent slowing down 

of the stratospheric ozone layer recovery is largely 

associated to the continual emission of 

trichlorofluoromethane (CFC-11) in the northeast 

China.  

 

The suggestion of a decrease in stratospheric ozone 

recovery and the continuation of the ozone 

decline in the lower stratosphere have been presented 

by other authors (e.g. Ball et al., 2018). A study by 

Ball et al. (2018) indicated that while stratospheric 

ozone layer has stopped declining across the globe, 

there is no clear increase observed at latitudes between 

60°S and 60°N outside the polar region (60-90°). 

Therefore, it is for this reason that models that can 

predict and also forecast the dynamics of the 

stratospheric ozone are imperative.  

 

The performance of linear models such as 

Autoregressive Integrated Moving Average (ARIMA) 

and non-leaner models such as Artificial Neural 

Networks (ANN) autoregressive in time series 

forecasting has strengthened its popularity (e.g. 

Khandelwal et al., 2015). But, a hybrid model which 

is built by combining the two methods (leaner and 

non-leaner) has been shown to produce better results 

than the individual models (e.g. Khandelwal et al., 

2015). Moreover, long short-term memory networks 

(LSTM) Recurrent Neural Networks (RNNs) which 

was proposed by Hochreiter and Schmidhuber (1997) 

has been proven to be one of the improved variants of 

RNNs which can learn the information contained in 

time series data more directly. Therefore, in this study, 

we assess the performance of the hybrid ARIMA-

ANN and LSTM models in predicting stratospheric 

ozone amounts. The study also proposes the use of 

discrete wavelet transform (DWT) for denoising the 

time series before the use of the LSTM model. 

 

The rest of the paper is outlined as follows. The next 

section describes the instruments and data used in this 

study, and an overview of models used here. This is 

followed by empirical results and the conclusion in the 

final section.    
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Instrument and Method  

In this study, we opted to use stratospheric ozone 

mixing ratio data averaged in the 20-50 km altitude 

range from ozone profiles as measured by the 

Sounding of the Atmosphere using the Broadband 

Emission Radiometry (SABER) instrument on-board 

the Thermosphere-Ionosphere-Mesosphere Energetic 

and Dynamics (TIMED) satellite. The data used in this 

investigation covers 17 years (January 2002 – 

December 2018) of SABER overpasses (within ±5° in 

latitude and longitude shift) for three station, namely 

Irene (25.88°S, 28.22°E), Nairobi (1.29°S, 36.82°E), 

and Reunion Island (21.11°S, 55.53°E). This locations 

were chosen because they are part of the Southern 

Hemisphere Additional Ozonesondes (SHADOZ) 

sites operated by National Aeronautics and Space 

Administration (NASA) Goddard Space Flight Center 

(GSFC). More details about the SABER instrument 

and TIMED satellite can be found in other studies (e.g. 

Remsberg et al., 2003; Bègue et al., 2017). For the 

purpose of this research, the data was averaged to 

monthly means. The map of the study area is shown in 

Fig. 1.   

   

 
Figure 1. Map showing the location of SHADOZ 

stations used in this study.   

 

One popular method that enables one to detect both 

linearity and nonlinearity during time series prediction 

and forecasting is to develop a hybrid ARIMA-ANN 

model (e.g. Zhang et al., 2003; Khandelwal et al., 

2015). ARIMA model is a linear model that is based 

on the fundamental principles that the future values of 

the time series are produced from a linear function of 

the previous values and white noise terms. It assumes 

that the time series can be stationarized by 

transformations such as differencing, where the order 

() is classified as follows: 

  is the number of autoregressive terms  

  is the number of non-seasonal differences 

  is the number of lagged forecast errors in the 

prediction equation 

A more detailed mathematical explanation of the 

ARIMA model can be found in other studies (e.g. 

Zhang et al., 2003; Khandelwal et al., 2015). On the 

other hand, autoregressive ANNs are an alternative to 

ARIMA for time series forecasting because they can 

estimate any nonlinearity up to any desired degree of 

accuracy (Khandelwal et al., 2015). In this study, we 

opted to use a single hidden layer feedforward ANN 

with one output node, which is commonly used in 

forecasting. More details about this type of ANN can 

be found in a study by Zhang et al., (2003). 

 

This study also utilizes a deep learning Recurrent 

Neural Networks (RNNs) method called long short-

term memory networks (LSTM). In general, RNNs are 

improved multilayer networks that have internal 

connections that can pass the processed signal from 

the current moment to the future. More details about 

RNNs can be found in a study by Giles et al. (2001). 

LSTMs are family of RNNs that are often used with 

deep neural networks. In summary, as illustrated by 

Fig. 2, a LSTM is made up of three gates, a forget gate 

(f_t) which controls if/when the context is forgotten, 

an input gate (i_t) which controls if/when a value 

should be remembered by the context, and an output 

gate (o_t) which controls if/when the remembered 

value is allowed to pass from unit. This exclusive 

structure of the LSTM is capable to effectively solve 

the problem of gradient loss and gradient explosion 

problem during the training procedure (Hochreiter and 

Schmidhuber, 1997).  

Figure 2. The structure of the long short-term memory 

(LSTM) unit. 

 

In a mathematical form, the above diagram (Fig. 2) can 

be represented in this form: 

 

     

𝑓𝑡 = 𝑆(𝑊𝑓 ∙ [�̂�𝑡−1, 𝑥𝑡] + 𝑏𝑓)     (1) 

𝑖𝑡 = 𝑆(𝑊𝑖 ∙ [�̂�𝑡−1, 𝑥𝑡] + 𝑏𝑖)  (2) 

�̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶 ∙ [�̂�𝑡−1, 𝑥𝑡] + 𝑏𝐶)  (3) 

𝐶 = 𝑓𝑡 ∙ 𝐶𝑡−1 + 𝑖𝑡 ∙ �̂�𝑡   (4) 

𝑜𝑡 = 𝑆(𝑊𝑜 ∙ [�̂�𝑡−1, 𝑥𝑡] + 𝑏𝑜)   (5) 

�̂�𝑡 = 𝑜𝑡 ∙ 𝑡𝑎𝑛ℎ(𝐶𝑡)   (6) 
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In the set of equations in Eq. (1,2,3,5) are the 

corresponding weight matrix connecting the signal , 

and  represents the element level multiplication.  and  

are the signal activation function and the state of cell, 

respectively. 

 

For the purpose of this study, we first apply the LSTM 

in the original time series as it is, and then applied the 

LSTM in a denoised time series in order to investigate 

whether denoising the time series does improve the 

model performance. The denoising process was 

performed by employing the discrete wavelet 

transform (DWT). A detailed explanation about the 

DWT and its application in the preparation of a signal 

before it is pushed into an LSTM RNNs is explained 

by Liu et al., (2019). For the purpose of this study, we 

label the LSTM that uses the DWT denoised signal a 

WD-LSTM, while the one which did not use the 

denoising step is called LSTM. For both LSTM 

models, the time series is first normalized using the 

maximum and minimum (max/min) method before it 

is pushed into the LSTM, and the LSTM output is 

denormalized using the same method at the end. The 

flow chart indicating steps which are taken when 

creating the WD-LSTM is shown in Fig. 3.   

     

Figure 3. The architecture of the WD-LSTM model.  

 

Results 

As mentioned above, the experiment was conducted 

with stratospheric averaged ozone mixing ratio data 

measure over three sites, namely Irene, Nairobi, and 

Reunion Island. The time series of stratospheric ozone 

are depicted in Fig. 4. In general, stratospheric ozone 

seems to be stronger in lower latitudes (Nairobi) 

compared to the tropics (Irene and Reunion Island). By 

using the Theilsen method, it was observed that the 

stratospheric ozone layer is recovering by 0.20%/years 

over Nairobi since 2002, while the recovery is 

0.18%/years for both Irene and Reunion Island sites, 

respectively. 

 

Three different forecasting models were used in the 

data set in Fig. 4. The LSTM system used here is a 

Python TensorFlow LSTM system which was run in a 

miniconda. And, the hybrid ARIMA-ANN was 

designed using the Forecasting: Principle and Practice 

(fpp2) package in R. For denoising, this study used a 

Daubechies (db8) wavelet family in the PyWavelets 

wavelet transform software for Python. This family of 

wavelets was selected because it performed better than 

others in terms of the model accuracy.  

Figure 4. Stratospheric ozone for Irene (red), Nairobi 

(blue), and Reunion Island (black dashed) sites. 

 

Fig. 5 (a-c) depicts the actual testing datasets (black 

line) and its forecasts (black dashed line: LSTM, blue 

line: WD-LSTM, and red line: ARIMA-ANN) for 

Irene (a), Nairobi (b), and Reunion Island (c) 

stratospheric ozone. It is notable that the three models 

give different forecast results of the monthly mean 

ozone data series from the three study stations. But, 

the WD-LSTM seems to outperform the other two 

models while the ARIMA-ANN model is the least 

performing model. As expected, the ARIMA-ANN 

model seems to hardly catch the sudden changes in the 

original time series, while the WD-LSTM model 

seems to overcome this drawback. The application of 

DWT denoising to the data before it is pushed into the 

LSTM significantly improved the LSTM model. 

For a comprehensive presentation, the three data-

driven predictive models were examined using 

graphical demonstration of Taylor diagram, as 

displayed by Fig. 5(d-f). The Taylor diagram is 

informative as it assist by visualisation of the 

comparative strength of the models to the actual target 

variable. In the Taylor diagram, the two different 

statistical metrics (i.e., correlation coefficients and 

standard deviations of each model) are used to 

quantifying the comparability between the models and 

the actual data. The distance from the reference point 

is a measure of the RMSE. Based on the Taylor 

diagram representation presented in Fig. 5(d-f) for the 

three data-driven models used in this study, WD-
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LSTM outperformed the other two models in all the 

study sites.                  

 

 

 

Figure 5. Testing sets and forecasts using LSTM, WD-LSTM, and Hybrid ARIMA-ANN for: (a) Irene, (b) Nairobi, 

and (c) Reunion Island. Taylor diagram graphical representation for the three models for: (d) Irene, (e) Nairobi, and 

(f) Reunion Island.    

 

Conclusion 

When investigating the trends of stratospheric ozone 

data used in this study, it was observed that there is a 

slow recovery of the ozone of approximately 0.18% - 

0.20% per year for the study sites (Nairobi, Irene and 

Reunion Island). 

 

It is acceptable that achieving reasonably accurate 

forecasts of time series is an important yet challenging 

task. However, this study has shown that denoising the 

time series before pushing them into the LSTM deep 

learning method enhance the model accuracy. The 

Hybrid ARIMA-ANN model which is a machine 

learning system seems to have failed to capture the 

nature of the time series compared to a deep learning 

LSTM method. Therefore, this study has also shown 

the superiority of deep learning methods when 

compared with machine learning methods.          
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The roles of non-quasigeostrophic (NQG) forcing during three Cut-off low (CoL) onsets over South Africa (SA) were 

elucidated using an extended quasigeostrophic height tendency equation at 500hPa. Advection terms reflected a 

cohesive pattern preceeding CoL 2 (10 March 2019) onset which weakened thereafter when the advection of 

ageostrophic vorticity (Fv2) and the advection of absolute vorticity by the ageostrophic wind (Fv3) had opposing 

effects. The advection of geostrophic absolute vorticity (Fv1) was dominant during CoL 2 formation with the 

quasigeostrophic (QG) thermal advection (FT1) playing a similar but secondary role. Forcing time and area averages 

revealed that tilting (Ftilt) and horizontal divergence (Fdiv) consistently forced height falls and rises respectively. Poor 

forcing evolution average correlations between the CoLs were established while a possible implication on 

predictability is discussed briefly. 
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Introduction    

Hazardous high-impact weather events such as floods 

associated with Cut-off low pressure systems (CoLs) 

(Favre, 2013; Engelbrecht, 2015) as well as the 

increased frequency of occurrence of such weather 

systems over South Africa (SA) (Favre, 2013) suggest 

that considerable efforts have to be devoted to the 

development of forecasting tools that may add value 

to the forecasting process of such weather systems. 

Through the use of diagnostic equations, one can gain 

insight into the important aspects of the development 

of such extra-tropical systems as they unfold, in a 

qualitative and mostly approximate manner to 

complement the Numerical Weather Prediction 

(NWP) guidance (Nielsen-Gammon and Gold, 2006). 

 

The quasigeostrophic (QG) theory (Bluestein, 1993; 

Holton, 2004) is often preferred in studies as opposed 

to finding solutions to the primitive equations due to 

its simplicity and ability to describe slow evolving 

synoptic waves in the mid-latitudes where the Rossby 

number is very small (Ro<<1) and linear wave theory 

is assumed (Andrews et al., 1987; Gall, 1977). 

However, several drawbacks of this framework are 

attributable to the assumptions made in the 

formulation of the theory, effectively hampering its 

utility. These include; the assumption that the 

horizontal wind is purely geostrophic, thus ignoring 

ageostrophic processes, the exclusion of diabatic 

processes and friction effects (Tsou et al., 1987; 

Colucci and Dong, 2015), collectively referred to as 

non-quasigeostrophic (NQG) forcing. 

Indeed, owing to the imposed restrictions, several 

studies have found traditional QG diagnostics to be 

inadequate for the description of some extra-tropical 

and mid-latitude weather systems such as cyclones and 

blocking high pressure systems (Tsou et al., 1987; 

Colucci and Dong, 2015), giving rise to the need for 

the relaxation of some of the imposed assumptions, 

which extends the traditional QG equations. 

 

Several extended forms of the QG height tendency 

equation have been derived and found to approximate 

the evolution of extra-tropical systems with improved 

accuracy as compared to their traditional form 

(Colucci and Dong, 2015; Tsou et al., 1987). These 

include the effects of NQG processes such as the 

horizontal wind (which also accounts for the 

ageostrophic wind) (Colucci and Dong, 2015; Lupo, 

2001) in their formulation as well as a three 

dimensionally varying static stability parameter, 

which are not assumed in the traditional QG 

framework (Colucci and Dong, 2015; Tsou et al., 

1987) while retaining the simplicity and usability the 

QG theory is known for. 

 

The main objectives of this study were as follows; to 

diagnose CoLs over SA using an extended form of the 

QG height tendency equation, to assess the role of 

NQG forcing with particular interest on the 

ageostrophic wind related forcing during the onset of 

three CoLs as well as to establish and assess patterns 

relating to the terms in the NQG equation during the 

period preceding the onset of CoLs, which may inform 

aspects of predictability studies. The CoL events of 

interest were; the 10 August 2018, 10 March and 22 

April 2019 events hereafter referred to as CoL1, 2 and 

3 respectively. 
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Data and Methodology 

The calculations were done using the 6 hourly 2.5 x 

2.5  grid resolution, with 17 pressure levels 

(1000hPa-10hPa) re-analysis dataset from the 

National Centre for Environmental Prediction (NCEP) 

for: air temperature, U and V horizontal winds, 

geopotential height and vertical velocity (omega) 

fields. Attention was focused on the 500 hPa level due 

to the growth in QG calculated geopotential tendency 

errors at higher tropospheric levels and the 

stratosphere (Colucci and Dong, 2015). 

 

 Basic variables such as  are as described in (Holton, 

2004), while terms appearing in Eq. (1) are defined as: 

 : The geopotential height tendency, 

 FV1: QG vorticity advection, 

 FV2: Ageostrophic relative vorticity by the 

geostrophic wind, 

 FV3: Absolute vorticity due to the 

ageostrophic wind, 

 FT1: QG thermal advection term, 

 FT2: Thermal advection due to ageostrophic 

wind, 

 Fageo: Ageostrophic vorticity tendency, 

 Fvert: Vertical advection of relative 

vorticity, 

 Fdiv: Horizontal divergence term, 

 Ftilt: Tilting term. 

 

Eq. (1) (Colucci and Dong, 2015) was the chosen 

diagnostic on the basis of its consideration of 

ageostrophic processes and previous successful 

application in Southern Hemispheric (SH) Rossby 

Wave Breaking (RWB) studies such as blockings 

(which are associated with CoLs) (Colucci and Dong, 

2015, Hoskins and Tyrlis, 2007, Ndarana and Waugh, 

2010). This is important because of the extra-tropical 

location of SA, where departures from pure 

geostrophy can be expected. Onsets were defined as 

the first hour of the day (00z) of CoL onset for each 

events. The onset day was defined as the day of the 

first occurrence of the cut-off closed low pressure, 

following (Molekwa, 2013). 

 

The onset region was defined as the region completely 

enclosing the west flank of the cyclone spanning at 

least 20  latitudes and longitudes so as to include the 

area of maximum inward curvature characteristic of  

RWB to capture the behaviour of the terms during the 

evolution by calculating both area and time averages 

of the forcing terms during the evolution of each of the 

three CoLs.  Onset regions (27.5o-47.5o S; 10 o W-15o 

E), (25o -45o S; 5o W-20o E)  were defined for CoLs 1, 

2, and 3 respectively (same region for CoLs 2 and 3). 

 

All unknown variables appearing in Eq. (1) forcing 

terms were approximated numerically using finite 

differencing (central differentiation) in both the 

horizontal and verticals over 5 days prior and post 

onset) with zero upper and lower boundary conditions 

for the pressure levels. Each forcing term was 

computed separately so as to isolate and assess its 

individual contribution (forcing) to  . This is warranted 

by the fact that for sinusoidal disturbances, the 

Laplacian of the function obtains a maximum value 

where the function is a minimum (Holton, 2004), 

resulting in Eq. (2). For purposes of visual 

interpretation, Eq. (2) was solved after calculations. 

 

A 9-point averaging filter was applied to each grid 

point to produce smooth results. Furthermore, extreme 

outliers, defined for this study as those points with 

values two orders of magnitudes higher than its 8 

surrounding members were removed and replaced by 

an interpolated value obtained by averaging 8 

neighbouring points for each removed grid point. 

The calculated area and time averages of the forcing 

terms were then used to produce time series plots for 

each CoL. To compare the association between the 

evolution of the three CoLs, each CoL time series was 

correlated linearly with the other two CoLs under 

investigation, for example, CoL 1 was correlated with 

CoL 2, then correlated with CoL 3 to produce three 

correlation coefficients. 

 

Results 

Forcing for  for the three CoL events were calculated 

and compared against one another. Generally, all the 

terms displayed fairly similar behaviour during each 

of the three events, therefore only CoL 2 is extensively 

reported on. This is to avoid repetition, and due to the 

fact that CoL 2 has properties relating to both CoL 1 

and CoL 2, e.g CoL 1 propagated zonally at a fairly 

consistent rate, while CoL 3 was quasi-stationary for 

some time after onset, while CoL 2 moved relatively 

slower as compared to CoL 1, but at an increased 

speed relative to CoL 3. Therefore, CoL 2 is 

considered as the average of the CoLs in this study. 

 

Fig. 1 reveals the spatial distribution of Fv1 prior and 

during CoL 2 onset. This is the most prominent term 

at the 500 hPa level as found in previous studies 

(Colucci and Dong, 2015; Tsou, et al., 1987), while 

FT1 is at a maximum in the lower troposphere (not 

shown). For ease of interpretation of the terms, 

negative values coincide with height falls ( < 0) while 

positive values represent height rises  > 0 ). This 

indicates that Fv1 was the most influential term during 

CoL 2’s life cycle. Prior to CoL 2 onset, terms: Fv1, 

Fv2, Fv3, FT1 and FT2 acted in cohesion as the 

mechanisms responsible for the north eastward 
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propagation (Fv1, Fv2 and Fv3) and intensification 

(FT1 and FT2) of the trough-ridge system through 

cold cyclonic advection on the west flank of the trough 

and warm anticyclonic vorticity advection on the east 

flank of the trough associated with height rises and 

falls respectively.  

 

This is because the collocation of vorticity terms’ 

(Fv1, Fv2 and Fv3) maxima and minima with the 

trough-ridge axes implies that vorticity does not 

contribute towards the intensification, therefore 

suggesting that it is responsible for system motion. 

Furthermore, zero thermal advection (FT1 and FT2) 

along the trough-ridge axes is associated with the 

intensification of the system (Holton, 2004).   

 

Fig. 1 reveals the spatial distribution of Fv1 prior and 

during CoL 2 onset. This is the most prominent term 

at the 500 hPa level as found in previous studies 

(Colucci and Dong, 2015; Tsou, et al., 1987), while 

FT1 is at a maximum in the lower troposphere (not 

shown). For ease of interpretation of the terms, 

negative values coincide with height falls ( < 0) while 

positive values represent height rises ( > 0). 

Figure. 1(a): Hövmöller diagram showing the 

evolution of Fv1 during and after CoL 2 averaged over 

region (20 - 40  S), units: 1015 × s−2.) 

 

This indicates that Fv1 was the most influential term 

during CoL 2's life cycle. Prior to CoL 2 onset, terms: 

Fv1, Fv2, Fv3, FT1 and FT2 acted in cohesion as the 

mechanisms responsible for the north eastward 

propagation (Fv1, Fv2 and Fv3) and intensification 

(FT1 and FT2) of the trough-ridge system through 

cold cyclonic advection on the west flank of the trough 

and warm anticyclonic vorticity advection on the east 

flank of the trough associated with height rises and 

falls respectively. 

 

This is because the collocation of vorticity terms’ 

(Fv1, Fv2 and Fv3) maxima and minima with the 

trough-ridge axes implies that vorticity does not 

contribute towards the intensification, therefore 

suggesting that it is responsible for system motion. 

Furthermore, zero thermal advection (FT1 and FT2) 

along the trough-ridge axes is associated with the 

intensification of the system (Holton, 2004).  

 

The pattern persisted until the onset when Fv2 and Fv3 

played opposing roles Figs. 2(a) and (b) as the 

magnitude of Fv1 decreased on both sides of the 

cyclone, having a net balancing effect on height 

changes as the CoL remained quasi-stationary, 

consistent with Godoy et al., (2011). The same pattern 

was observed for FT1 and FT2 (not shown). 

 

Table. 1: Area averages of all forcing terms averaged 

over a 48 hour pre-onset period, Forcing units: 1015 x 

s-2,  units: 103 m x 6h-1. 

 

Figure. 2(a): 500 hPa geopotential heights (black 

contours) overlaid with Fv2 24 hours post CoL 2 onset 

at 00z, units: 1015 x s-2. 

Figure. 2(b): 500 hPa geopotential heights (black 

contours) overlaid with Fv3 24 hours post CoL 2 onset 

at 00z, units: 1015 x s-2. 

 

Most notable of the NQG forcing is Fvert’s persistent 

forcing towards height falls over the onset region 48 

hours prior to onset followed by FT2 on average for 
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the three cases (Table. 1). In contrast, Ftilt was the 

leading positive term, persistently forcing height rises. 

Table. 1 also reveals a difference in behaviour between 

two classes of CoLs, those that remain quasi-

stationary for a prolonged period of time (CoL 3), and 

those that propagate continuously (CoLs 1 and 2). FT1 

contributes significantly towards height falls for quasi-

stationary types while in contrast with the propagating 

type, FT2 and Fdiv contribute negligibly towards 

height rises. 

 

Table. 2: Correlations (CoL1 and CoL2, CoL2 and 

CoL 3, etc) of the evolution of forcing terms during 

the 5-day pre-onset period.  

 

 
Figure. 3: A comparison of the evolution of Fv1 over 

the 5 day pre-onset period between the three CoLs. 

 

Fig. 3 represents a consistent sinusoidal signature of 

Fv1 during the 5-day pre-onset period over the onset 

region for all three CoLs. High and positive average 

correlations were found for Fv1 and Fv3 between the 

three CoLs (Table. 2), the generally poor correlations 

being attributable to the variability shown by CoL 2. It 

is noteworthy that generally speaking, the forcing 

evolution patterns for the three CoLs reflect a similar 

structure, pattern and shape, however the lack of 

synchronicity between the patterns contributes 

negatively to the linear correlation. As part of the on-

going CoL predictability studies, perhaps an issue of 

interest in light of the observed term evolution 

signatures could be related to the extent to which 

Ensemble Prediction Systems (EPS) can predict them.  

  

It is worth noting that CoL 1,  saw a largely negative 

contribution by Fv1, indicating significant 

anticyclonic vorticity advection over the onset region 

5-days before onset. This may be due the fact that CoL 

1 was not quasi-stationary as opposed to CoLs 1 and 2 

which saw propagation mechanisms playing relatively 

smaller roles. In contrast with Fv1, Fvert together with 

FT2 (also in CoL 2) had consistent, large negative 

contributions during the period. In addition, in all the 

cases analysed, FT2, Fvert as well as Fdiv forced 

height falls over the onset region while the rest of the 

terms generally contributed positively. 

 

Conclusion 

Three CoL events were diagnosed over SA using an 

extended form of the QG geopotential height tendency 

equation (Colucci and Dong, 2015) in line with the 

objectives of this study. Consistent with previous 

studies, it is found that for the analyzed CoLs, QG 

advection processes (Fv1 and FT1) dominate trough-

ridge development while NQG terms play occasional 

secondary roles. NQG equivalents assumed a 

complementary role to have a net influence on . The 

roles of NQG unrelated to advection were also 

analysed. Fvert and Ftilt contributed on average 

significantly towards height falls and rises over time 

in within the onset region. An evolution pattern of the 

forcing terms was established and found to be 

approximately consistent throughout the three CoLs 

which then then begs the question, how useful could 

the pattern be for predictability studies? The finding of 

the study serves as testament that there is some 

knowledge to be gained from the utility of simple, 

traditional diagnostics in research. 
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The atmospheric circulation over South Africa is generally dominated by extra-tropical weather systems. However, 

during the summer months, tropical weather systems track further south and contribute to the rainfall in the region. 

Due to the less frequent occurrence of tropical weather systems, they are often overlooked and sometimes not even 

identified. One such system is the Africane. Africanes are warm cored, synoptic scale low pressure systems that are 

unique to southern Africa This research demonstrates an objective identification method that can be used to recognize 

a tropical weather system that has received very little attention up to now.  
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Introduction  

The tropics can generally be defined as the area 

positioned between the Tropic of Cancer (23.5˚N) and 

the Tropic of Capricorn (23.5˚S) (Asnani, 2005). 

South Africa is positioned such that the Tropic of 

Capricorn is situated over the north-eastern parts of the 

country, thus tropical weather systems often reach this 

region during the summer months (Dyson and van 

Heerden, 2002). Even though tropical weather systems 

do affect the Republic, the dominant weather systems 

are extra-tropical. Consequently, forecasters are very 

familiar with the forecasting of extra-tropical weather 

systems, but often lack the necessary experience to 

identify and forecast tropical weather systems.  

 

The main tropical weather systems affecting southern 

Africa include tropical cyclones, tropical low 

pressures, tropical temperate troughs (TTTs) and the 

inter-tropical convergence zone (ITCZ). Taljaard 

(1994) defines the ITCZ as an area of low pressure that 

lies in close proximity to the equator. Harrison (1986) 

added that the location of the ITCZ has a major 

influence on the rainfall in southern Africa. The ITCZ 

is furthest south during late summer. During this time, 

there is often a low-level tropical/subtropical low 

pressure that extends a trough towards South Africa 

(Williams et al.,1984). This low pressure was named 

by Mulenga (1998) as the Angola low and defined by 

Reason et al., (2006) as a shallow heat low situated 

over southern Angola/northern Namibia that starts to 

develop in October, strengthening by January and 

February.  

 

Very limited research has been dedicated to tropical 

weather systems over southern Africa, except for the 

period between 1940 and 1970 known as the “golden 

period of African tropical meteorology” where a 

substantial amount of research was devoted to tropical 

and subtropical Africa (van Heerden and Taljaard, 

contributing to Karoly and Vincent, 1998). Even 

though there is limited research and understanding of 

tropical weather systems over Africa, they are 

notorious for the devastation they cause across 

southern Africa. The extreme amounts of rainfall 

associated with these systems often results in 

widespread flooding. During January 2017, one such 

system, a Continental Tropical Low pressure (CTL), 

which was not identified by forecasters, devastated 

parts of southern Africa (SAWS, 2018).  

 

There has been very limited research dedicated to 

CTLs from a forecasting perspective with just a 

handful of documented work available (Taljaard, 

1996; Dyson and van Heerden, 2002 and recently 

Webster, 2018). The only known similar weather 

system to exist elsewhere in the world, is found in 

Australia, where it is informally referred to as a 

landphoon (Tang et al., 2016 and May et al., 2008) or 

an agukabams (Emanuel et al., 2008). Due to the 

exclusiveness of CTLs to southern African, they will 

henceforth be referred to as Africanes.  

 

As such, this paper aims at highlighting the occurrence 

of Africanes over southern Africa by first explaining 

the identification process used to recognize Africanes 

and then creating a climatology over southern Africa. 

A brief look at the rainfall contribution of Africanes 

will demonstrate the significance of these weather 

systems. This paper also aims at increasing 

forecasters’ awareness of these weather systems so 

that they can identify them timeously in future.  
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Data and Methodology 

Using reanalysis data from the National Centers for 

Environmental Prediction (NCEP) (Kalnay et al., 

1996), Webster (2018) recently developed an 

identification method that objectively identifies 

Africanes over southern Africa. This method is 

broadly based on work done by Dyson and van 

Heerden (2002) who developed a Model for the 

Identification of Tropical weather Systems (MITS). 

While using MITS to identify tropical weather 

systems, the semi-permanent Angola Low pressure 

was frequently identified. Therefore, to identify 

Africanes and exclude the Angola Low, Webster 

(2018) uses four very strict criteria that consider the 

long term means. Engelbrecht et al., (2013) stated that 

tropical low pressures have a scale of 500-1000 km, 

therefore NCEP reanalysis data (Kalnay et al., 1996), 

will adequately be able to resolve these weather 

systems as the horizontal resolution is 2.5° 

(approximately 250km) with a vertical resolution of 17 

levels. In addition, NCEP reanalysis data is available 

every 6 hours. NCEP is used here in the same way as 

previous work done on synoptic scale weather systems 

over South Africa (see Singleton and Reason, 2007; 

Malherbe et al., 2012; Favre et al., 2012, 2013; 

Engelbrecht et al., 2014).  
 

The first criteria relates to classifying a favourable 

tropical area (FTE). This is done by identifying a grid 

point that meets the following conditions:  

 Negative vorticity values need to exist at 850 and 

500 hPa and be replaced by positive values at 300 

hPa; 

 Precipitable water values in the 850-300 hPa 

layer need to exceed 20 mm; 

 Precipitable water values also need to exceed the 

long-term average for the particular month; 

 The average 500-300 hPa temperatures need to 

be higher (warmer) than the average for that 

month; 

 The average tropospheric total static energy 

values also need to be higher than the long-term 

average for that month; 

 The negative vorticity values representing 

cyclonic circulation at 850 and 500 hPa is 

required to be stronger than the norm while the 

positive values at 300 hPa are required to be 

higher than the norm at this level for the 

particular month.  

 

Once an FTE is recognised, the next criteria is two-

fold and requires that a warm core (in the 500-300 hPa 

layer) and closed low (at 500 hPa) are identified and 

that they are within two grid points of each other. Once 

this is met, the low is now termed a warm low. 

Following this, the third criteria states that the FTE 

and warm low are within two grid points. If this is true, 

the low pressure is now called a warm FTE low. The 

fourth and final criteria is that two warm FTE lows 

exist within 18 hours of each other and are within two 

grid points. Once a certain grid points meets all these 

criteria, the position of the closed low pressure is used 

as the location of the Africane. Further fine tuning has 

taken place to take into account larger Africanes that 

extend over more than a single grid point. What this 

means is that if more than one Africane is identified at 

the same time step, the grid point closest to the average 

position of the Africanes is used as the location of the 

Africane and therefore only one Africane is counted at 

that time. This eliminates the possibility of a large 

Africane being counted multiple times.     
 

Results   

This study focuses on the summer months, December 

to March for the period December 1979 to March 2018 

for the area over southern Africa, south of 15˚S. 

During this time, the identification method recognized 

2346 events. This equates to roughly 587 Africane 

days (Africane events grouped in a 24-hour period 

with a possibility of 4 events being recognized per 

day) during the period and an average of 15 Africane 

days per year.  
 

It is found that Africanes favour the extreme south-

eastern parts of Angola (Fig. 1) with the occurrences 

decreasing rapidly southwards. Africanes are also 

found to occur more frequently over the eastern parts 

of southern Africa, with far less occurrences in the 

west. Over the South Africa region (area enclosed in a 

box in Fig. 1), the highest number of Africane 

occurrences is found in the extreme north-eastern part 

of the region (border of Limpopo Province and 

Mozambique). There is a steady decrease in events 

towards the south-western parts. The higher number of 

events in the north-east can be attributed to landfalling 

tropical cyclones that move eastwards over southern 

Africa and weaken, taking on Africane characteristics. 

The furthest south an Africane was found is occur is at 

32.5˚, which only occurred once during this study 

period on 23 January 2011.  

 

Africanes are found to occur most frequently in 

January (35.4%), followed very closely by February 

(34.4%) (Fig. 2). These results are similar to those 

found by Dyson et al., (2015) who stated that during 

late summer months (January to March), the 

atmosphere over Gauteng transforms and becomes 

noticeably tropical. Almost equal number of Africanes 

occur during December and March months (Fig. 2). 
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Figure 1: The total number of Africanes over southern 

Africa per grid point for December to March 1979-

2017.  2346 events were identified in total. The area 

enclosed is referred to the South African region. 

 

Figure 2: Percentage of occurrence of the total number 

of Africanes over the entire domain per month for 

1979-2017. 

 

The geographical distribution of Africanes over 

southern Africa varies slightly each month (Fig. 3). 

Africanes are confined to the extreme eastern  and 

north-eastern parts of South Africa during December 

months (Fig. 3a). In January (Fig. 3b) there is a 

westward shift in the distribution and by February 

(Fig. 3c), Africanes occur over the northern parts of 

the Northern Cape. During March months (Fig. 3d), 

the least number of Africanes are found to occur in the 

east, however, there is a clear increase in the number 

of Africanes in the western parts of South Africa. This 

shift in the distribution between the months coincides 

with the westward movement of the 50 mm isohyet 

over South Africa during the summer months 

(Taljaard, 1996).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Geographical distribution of the total number 

of Africane events over southern African during the 

months (a) December, (b) January, (c) February and 

(d) March. 

 

 

 

 

 

 

 

(a) 

15%
December

35%
January

35%
February 

15%…

(b) 

(c) 

(d) 



133 
 

Contribution to rainfall 

Using CPC rainfall data, the contribution Africanes 

have to rainfall over southern Africa is investigated.  

 

CPC rainfall is a global unified gauge-based analysis 

of daily rainfall on a 0.5 by 0.5° resolution. The 

rainfall is available daily from 1979 to current and 

over 30 000 land based stations rainfall data is 

incorporated into the product 

(https://www.cpc.ncep.noaa.gov/). The rainfall for 

each Africane day is calculated and a composite map 

is presented in Figure 4. The results show that the 

highest rainfall amounts are generally located to the 

east of the position of the Africane (Fig. 4) with 

considerably less rainfall to the west with the south-

west regions receiving the lowest rainfall.  

 

Figure 4: A composite average rainfall map showing 

the rainfall distribution around an Africane. The 

location of the Africane is in the centre of the image.  

 

It is also found that topography plays a very important 

role, influencing rainfall amounts. As an example, 

figure 5 is the average rainfall for all events when the 

Africane was situated at 25 S and 27.5 E. The higher 

rainfall amounts can clearly be seen over the 

escarpment of South Africa and Zimbabwe.  

Figure 5: Average rainfall for all events when the 

Africane was located at 25 S and 27.5 E.  

 

Conclusion  

Africanes favour southern Zambia and Angola with a 

rapid decrease in number of events further southwards. 

Africanes also occur most frequently during January 

and February months. It is during March months, that 

Africanes extend over more of South Africa. The 

development of a climatology of Africanes over 

southern Africa, will create an increased awareness in 

the existence of these weather systems. Forecasters 

will therefore be able to confidently and accurately 

identify them. The rainfall distribution around an 

Africane has higher rainfall amounts to the east of the 

central Africane position, however topography can 

influence the location of the heaviest rainfall. This 

information is of vital importance to a forecaster, as an 

area of concern for heavier rainfall can easily be 

identified and kept a close watch on.  
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The South African Weather Service in collaboration with the National Disaster Management Centre are in the final 

stages of developing and implementing a new weather warning system for the country. This warning system will 

completely change the conventional threshold-based warnings into colour-coded warnings that are easier to 

understand. Pilot phases have been used to test the warnings in real time and to fine-tune the warning process with 

disaster managers only. The feedback received from the disaster managers has been extremely positive thus far.   
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Introduction  

The forecasting of severe weather hazards has 

improved significantly over the past few years, 

however an accurate and timely warning does not 

guarantee the safety of life (WMO, 2015). Severe 

weather related hazards frequently occur over South 

Africa. It is when this severe weather has negative 

impacts that disasters occur. The extent of the impact 

is dependent on the vulnerability of the affected area 

with certain areas being more vulnerable to a certain 

weather hazard than others.   

 

Currently the South African Weather Service (SAWS) 

issues warnings based on meteorological thresholds. 

As such once the weather conditions are expected to 

meet the specific threshold criteria, a warning is 

issued, without considering the vulnerability of the 

area affected. The general public have difficulty in 

understanding these threshold based warnings. For 

example, the general public struggle to relate to a gale 

force wind warning of 70 km h-1, as they do not 

understand what this means.  

 

There is a need for the warnings to be useful, concise 

and easy to understand. Internationally this has also 

been noticed by other meteorological institutions and 

consequently the World Meteorological Organisation 

(WMO) has started a movement to promote severe 

weather warnings to be impact-based. Weather related 

warnings need to evolve from what the weather will be 

to what the weather will do.  

 

SAWS together with the National Disaster 

Management Centre (NDMC) have embarked on 

developing and implementing an Impact-Based 

(ImpB) Severe Weather Warning System (SWWS) for 

South Africa. The main focus of this ImpB SWWS is 

to change the focus of the early warning service from 

a weather prediction to a people-centred risk 

prediction, which is tailored to South African 

conditions.  

 

This multi-year project, included the hosting of 

stakeholder workshops with disaster managers from 

Provincial and District level from across the country. 

At these workshops, the concept of the ImpB SWWS 

was explained and input provided by the disaster 

managers was included in the system. This warning 

system is a completely different approach for 

forecasters and requires a paradigm shift in the way 

the warnings are dealt with, as such all the forecasters 

also underwent training.  

 

Impact-Based Severe Weather Warning System  

The ImpB SWWS combines the severity level of the 

impact with the likelihood of the impact occurring 

(Fig. 1). The impact levels are determined in 

conjunction with the local disaster managers, thus 

making this a joint warning.  

Figure 1: Warning Risk Matrix showing the 

combination of the impact levels on the horizontal axis 

with the likelihood on the vertical axis. 

 

Pilot phases started at SAWS head office in 2016 with 

the issuing of ImpB warnings for Gauteng for the 

summer season. Since then the pilot phases have 

extended across the remainder of the country and will 
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continue until the ImpB SWWS is operational. 

Through these pilot phases the new warning system is 

thoroughly tested.  

 

Lesson learnt 

In June 2017, an intense cut-off low pressure which 

notoriously became known as the #CapeStorm 

affected the Cape provinces. Gale force winds 

reaching strong gale force (64-87 km h-1) were 

expected across most parts of the Western Cape during 

#CapeStorm, however an additional sensitivity that 

was initially not completely accounted for was the 

possibility of runaway fires. On Tuesday 6 June 2017, 

winds started picking up and small fires in the Knysna 

area quickly became out of control and caused 

widespread devastation along the Cape south coast.  

 

More recently, in June 2019, a cold front was expected 

to move over the Western and Eastern Cape resulting 

in strong to gale force winds (64-87 km h-1) along the 

coast as well as over the interior. This proved to be a 

perfect opportunity to once again test the effectiveness 

of the new warning system. 

 

Case Study: 21-22 June 2019  

Throughout the pilot phase, each forecasting office 

issues an outlook to the local disaster managers every 

Monday for the upcoming week. This is to provide an 

indication to the disaster managers on any potential 

hazardous weather.  The Cape Town and Port 

Elizabeth forecasting offices issued the weekly 

outlooks on Monday 17 June 2019. In these outlooks, 

there was no mention of the possible intense cold front, 

but it was mentioned that strong north-westerly winds 

were expected on Friday. However, later on in the 

week, the Numerical Weather Prediction (NWP) 

models started showing signs of a severe cold front 

making landfall over the south-western Cape on 

Friday 21 June 2019.  

 

Numerical Weather Prediction Models  

Each day that week leading up to the event, the NWP’s 

projection of the cold front intensified, whereby higher 

wind speeds and rainfall amounts were anticipated. 

Consequently, warnings were issued from 

Wednesday, 19 June 2019. 

 

The cold front, supported by a steep upper air trough, 

was projected to develop into a cut-off low pressure 

system late on Friday. What made this cold front so 

unique and intense was the central position of the low 

pressure that was expected to pass unusually close to 

the South African south coast. This resulted in extreme 

wind conditions ahead of the cold front over the 

Western, Northern and Eastern Cape as well as off the 

south-west coast and later, along the south coast. Also 

associated with this front were very rough sea 

conditions and possible storm surge. 

 

Heavy downpours were possible with the passage of 

the front during Friday afternoon and into the next 

morning which could lead to flooding and flash 

flooding in areas. Accumulated rainfall expected from 

the Friday afternoon over the south-western parts of 

the Western Cape were between 20-30mm reaching 

40-60mm over the western mountain ranges.  

 

Relating to winds, strong to gale force and gusting 

winds (50-70 km h-1) were expected over most of the 

Western Cape interior however reaching 80-100kmh-1 

during the Friday afternoon and evening. Off the 

south-west coast, gale to strong gales of 65-80kmh-1 

reaching 100-120 km h-1 were anticipated throughout 

the afternoon and into the evening. These north-

westerly winds were projected to swing south-

westerly early on Saturday morning.  

 

Significant wave heights generated in the deep sea 

were expected to be between 6-9m along the Western 

Cape south-west coast during Friday night and 

Saturday morning. These swells were to spread along 

the south coast, but drop to 5-6 m. The high wave 

heights and strong onshore winds would aid in pushing 

water further up the beachfront resulting in possible 

storm surge. Additionally, the storm coincided with 

the winter solstice, subsequently resulting in spring 

tides. It would thus be around high tide times where 

the most damage was possible.  

 

Impact-Based Severe Weather Warnings Issued 

The first ImpB warning was issued on Wednesday 19 

June 2019 for most of the Western Cape and western 

parts of the Eastern Cape. The anticipated hazard was 

winds where significant impacts were expected. 

Warnings relating to rain impacts as well as coastal 

winds and waves were also issued on the Wednesday. 

On Thursday 20 June, once the NWP models were 

more in agreement with their prognoses, a number of 

warnings were upgraded to include severe impacts for 

wind (Fig. 2). These warnings were valid for the 21st 

and 22nd of June. Yellow and orange warning levels 

(Fig. 2), were issued for wind (over the interior), rain, 

rough seas, storm surge as well as coastal winds.  
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Figure 2: Graphical display of the new ImpB warning 

for wind issued on Thursday 20 June, valid for Friday 

21 to Saturday 22 June 2019. Severe impacts indicated 

in orange and significant impacts in yellow. 

 

The hazard that was the main cause for concern were 

the strong winds. The impacts that were expected as a 

result of the winds were damage to structures with the 

possibility of roofs blowing off, trees and power lines 

falling and blocking roads. This could then also result 

in transport routes being disrupted. Sandstorms were 

also likely to cause traffic disruption. The possibility 

of runaway fires was also highlighted as a risk and in 

an attempt to prevent history repeating itself, in 

relation to the infamous #CapeStorm, the local disaster 

managers were contacted and alerted to the possibility 

of active fires becoming uncontrollable and rapidly 

spreading. It was advised that if there were any active 

fires, these needed to either be extinguished or closely 

monitored. The disaster managers confirmed that 

measures had been taken to prevent any runaway fires 

and had also put a ban in certain areas on fire breaks 

being conducted. These possible impacts were 

captured within the ImpB warning issued. 

 

Communication with Disaster Management  

The set-out procedure regarding the ImpB SWWS, 

agreed upon with disaster management is that once 

any orange (or red) warnings are considered, the 

Provincial Disaster Management Centre (PDMC) has 

to be contacted telephonically. The expected weather 

conditions and possible impacts were discussed, and 

an agreement reached with regards to warning levels. 

These warnings were thereafter compiled and issued. 

This telephonic communication allowed disaster 

managers to have an early indication before the 

warnings were issued. They were then able to call an 

emergency meeting to discuss the required measures 

to be put in place.  

 

Summarised warnings were also sent to disaster 

managers via an instant messaging application, 

WhatsApp, for immediate access to weather warnings 

even if they are in the field. For this particular case, 

disaster managers contacted the Cape Town office 

early on Friday morning for clarity regarding the 

warnings and for an update in the expected conditions. 

The two way communication is vital for the success of 

this new warning system. 

 

Weather updates were sent via the WhatsApp platform 

on the day of the event and disaster managers provided 

feedback of impacts using situation reports, via the 

same platform.  

 

Actual Conditions and Impacts 

As the front passed over the Western Cape, rainfall set 

in from late afternoon on Friday, 21 June 2019. The 

frontal band and rainfall spread further inland 

overnight and over most of the Western Cape and 

western parts of the Northern Cape by the Saturday 

morning. However, the bulk of the rainfall 

accumulations were confined to the western mountain 

ranges of the Western Cape. The highest rainfall 

accumulations for the 21-22 June 2019 are depicted in 

Table 1. 

 

Table 1: Selected stations rainfall (mm) accumulation 

for the period 21 to 22 June 2019. 
Rainfall (mm) Total 

Stellenbosch 76.4 

Kirstenbosch 56.6 

Ceres 44.6 

Molteno 42.0 

Moreesburg (Langewens) 31.6 

Elgin Grabouw 28.6 

 

Although heavy downpours did occur, the strong and 

gusty winds were of higher concern. Even though 

slightly delayed in timing, these winds did materialise 

and at times even exceeded 100kmh-1 gusts along the 

coastal areas as well as in places over the Western 

Cape interior (Fig 3). Even though the average winds 

were weaker than expected, generally between 40-70 

km h-1, the gusts did the most damage. The gusts 

reached between 50-90 km h-1 with certain areas such 

as along the south-west coast (Cape Point, Slangkop 

and parts in the City of CapeTown) reaching between 

90-130 km h-1. Over the interior, areas such as 

Worcester and Ladismith also reached gusts between 

90-110 km h-1. 

 

According to reports from disaster management and 

various social media platforms several roofs were 

blown off, trees blown over, damaging formal and 

informal structures as well as pulling electricity lines 

down. Numerous areas across the City of Cape Town 

were without power for few days after the storm. A 

number of settlements were damaged and residents 

displaced. Severe rock falls occurred on the 
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Franschhoek Pass, significantly damaging two cars 

and resulting in the closure of the Pass. A severe 

sandstorm occurred on the R321 between Grabouw 

and Villiersdorp, leaving cars stranded and the closure 

of the road. 

 
Figure 3: Graphs showing the average wind speeds 

(top) and wind gusts (bottom) of selected stations 

across the Western Cape on Friday 21 June 2019. 

 

Verification of Warnings 

In order to improve the warnings issued, each warning 

is verified by the local disaster managers. Since this is 

a very subjective method, work is currently also being 

done on finding ways to verifying these warnings 

objectively. The warnings are also verified using 

reports gathered through various media platforms, in 

order to determine whether the expected impacts 

actually did occur. Once the warning system is 

operational, verification will also be done by 

conducting surveys with the general public.  

 

For this particular weather event, the feedback 

received from disaster managers indicated that 

warnings were mostly accurate, issued timeously and 

well communicated through the various platforms. 

However, warnings could have been clearer relating to 

the inclusion of more specific areas. The general 

consensus is that the ImpB SWWS is more user-

friendly and an improvement to the threshold based 

warning system. 

 

Conclusion  

The development of an ImpB SWWS will result in a 

people-centred service delivery of severe weather 

warnings for South Africa. The message that disaster 

managers as well as the general public will receive will 

be more relevant and straight forward with less 

meteorological jargon. This should result the 

appropriate actions taken in order to mitigate the 

adverse effect of hydro-meteorological hazards.  

 

This case study of the severe cold front that occurred 

during 21-22 June 2019, showed that two-way 

communication with disaster management is key. This 

case also shows that this warning system is feasible 

and valuable. 
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